Abstract

Nonlinear energy sink (NES) absorbers excel compared to traditional tuned mass dampers (TMD) due to their superior efficiency over a wider range of frequencies. However, despite the advantages of NES over TMDs, their susceptibility to variations in system energy poses a challenge, particularly in applications where the main structure is subjected to random excitations. A modified NES, referred to as Asymmetric NES, significantly enhances NES robustness, expanding its potential uses. This study investigates the factors contributing to the superior robustness of asymmetric nonlinear energy sink (ANES) in comparison to the performance of traditional cubic NES. Through an analysis utilizing nonlinear normal modes (NNM) and frequency energy plots (FEP), this research shows that the improved effectiveness of asymmetric NESs is due to the intricate interaction between their NNM and the primary structure's kinetic energy FEP, leading to more robust targeted energy transfer (TET). In this work, the NNMs of tuned ANES and NES with similar mass are plotted alongside the kinetic energy FEP of a three-story shear building subjected to various earthquake ground accelerograms. The findings obtained here reveal that the NNM of the ANES absorber intersects more effectively with the system's energy FEP inducing a more effective modal energy redistribution, explaining the superior robustness of the ANES against variations in the input spectrum power.

References

1.
Wierschem
,
N. E.
,
Luo
,
J.
,
AL-Shudeifat
,
M.
,
Hubbard
,
S.
,
Ott
,
R.
,
Fahnestock
,
L. A.
,
Quinn
,
D. D.
, et al
,
2014
, “
Experimental Testing and Numerical Simulation of a Six-Story Structure Incorporating Two-Degree-of-Freedom Nonlinear Energy Sink
,”
J. Struct. Eng.
,
140
(
6
), p.
04014027
.
2.
Matta
,
E.
,
2021
, “
Seismic Effectiveness and Robustness of Tuned Mass Dampers Versus Nonlinear Energy Sinks in a Lifecycle Cost Perspective
,”
Bull. Earthquake Eng.
,
19
(
1
), pp.
513
551
.
3.
Gomez
,
F.
,
Fermandois
,
G. A.
, and
Spencer
,
B. F.
,
2021
, “
Optimal Design of Nonlinear Energy Sinks for Mitigation of Seismic Response on Structural Systems
,”
Eng. Struct.
,
232
, p.
111756
.
4.
Chen
,
Y.
,
Qian
,
Z.
,
Chen
,
K.
,
Tan
,
P.
, and
Tesfamariam
,
S.
,
2019
, “
Seismic Performance of a Nonlinear Energy Sink With Negative Stiffness and Sliding Friction
,”
Struct. Control Health Monitoring
,
26
(
11
).
5.
Motato
,
E.
, and
Guerrero
,
F.
,
2022
, “
On the Effect of Nonlinear Energy Sink Damping in Seismic Vibration Attenuation
,”
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 10: 34th Conference on Mechanical Vibration and Sound
,
St. Louis, MO
,
Aug. 14–17
.
6.
Wang
,
J.
,
Zhang
,
C.
, and
Zheng
,
Y.
,
2022
, “
An Inerter-Enhanced Asymmetric Nonlinear Energy Sink for Response Mitigation of Structures Subject to Harmonic and Seismic Ground Excitations
,”
Struct. Control Health Monitoring
,
29
(
12
).
7.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3
), pp.
522
551
.
8.
Saeed
,
A. S.
,
Abdul Nasar
,
N.
, and
AL-Shudeifat
,
M. A.
,
2023
, “
A Review on Nonlinear Energy Sinks: Designs, Analysis, and Applications of Impact and Rotary Types
,”
J. Nonlinear Dyn.
,
111
(
1
), pp.
1
37
.
9.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
10.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
,
the Netherlands
.
11.
Motato
,
E.
,
Haris
,
A.
,
Theodossiades
,
S.
,
Mohammadpour
,
M.
,
Rahnejat
,
H.
,
Kelly
,
P.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2017
, “
Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains
,”
Nonlinear Dyn.
,
87
(
1
), pp.
169
190
.
12.
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2016
, “
Shock Mitigation by Means of Low-to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021006
.
13.
Zhang
,
S.
,
Zhou
,
H.
,
Jiaxi
,
D.
,
Wang
,
K.
, and
Xu
,
D.
,
2023
, “
Fractional Nonlinear Energy Sinks
,”
Appl. Math. Mech.
,
44
(
5
), pp.
1573
2754
.
14.
Savva
,
K.
,
Haris
,
A.
,
Motato
,
E.
, and
Mohammadpour
,
M.
,
2016
, “
Damping Effects Introduced by a Nonlinear Vibration Absorber in Automotive Drivelines at Idle Engine Speeds
,”
SAE Technical Paper
,
1
, p.
2016–01–1765
.
15.
Das
,
S.
,
Tesfamariam
,
S.
,
Chen
,
Y.
,
Qian
,
Z.
,
Tan
,
P.
, and
Zhou
,
F.
,
2020
, “
Reliability-Based Optimization of Nonlinear Energy Sink With Negative Stiffness and Sliding Friction
,”
J. Sound Vib.
,
485
, p.
115560
.
16.
Al-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.
17.
Habib
,
G.
, and
Romeo
,
F.
,
2017
, “
The Tuned Bistable Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
89
(
1
), pp.
179
196
.
18.
Dekemele
,
K.
,
Van Torre
,
P.
, and
Loccufier
,
M.
,
2019
, “
Performance and Tuning of a Chaotic Bi-Stable NES to Mitigate Transient Vibrations
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1831
1851
.
19.
Al-Shudeifat
,
M. A.
,
2014
, “
Asymmetric Magnet-Based Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
10
), p.
014502
.
20.
Gzal
,
M.
,
Fang
,
B.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Gendelman
,
O. V.
,
2020
, “
Rapid Non-Resonant Intermodal Targeted Energy Transfer (IMTET) Caused by Vibro-Impact Nonlinearity
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2087
2106
.
21.
Afsharfard
,
A.
,
2016
, “
Suppressing Forced Vibrations of Structures Using Smart Vibro-Impact Systems
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1643
1652
.
22.
Lu
,
X.
,
Liu
,
Z.
, and
Lu
,
Z.
,
2017
, “
Optimization Design and Experimental Verification of Track Nonlinear Energy Sink for Vibration Control Under Seismic Excitation
,”
Struct. Control Health Monitoring
,
24
(
12
), p.
e2033
.
23.
Motato
,
E.
,
2022
, “
Seismic Vibration Attenuation in Shear Buildings Using Nonlinear Energy Sink With Asymmetric Bi-Linear Element
,”
Dyn. Vib. Control
,
5
, p.
V005T07A057
.
24.
Wang
,
J.
,
Zhang
,
C.
,
Liu
,
Z.
, and
Wang
,
B.
,
2021
, “
Effectiveness and Robustness of an Asymmetric Nonlinear Energy Sink-Inerter for Dynamic Response Mitigation
,”
Earthquake Eng. Struct. Dyn.
,
50
(
6
), pp.
1628
1650
.
25.
Wang
,
Q.
,
Qiao
,
H.
,
Yu
,
X.
,
Huang
,
P.
, and
Wu
,
H.
,
2023
, “
Asymmetric and Cubic Nonlinear Energy Sink Inerters for Mitigating Wind-Induced Responses of High-Rise Buildings
,”
Struct. Control Health Monitoring
,
3
(
1
), pp.
1
22
.
26.
Hong
,
D.
,
Hill
,
T. L.
, and
Neild
,
S. A.
,
2021
, “
Understanding Targeted Energy Transfer From a Symmetry Breaking Perspective
,”
Proc. R. Soc. A
,
477
(
2251
), p.
x
.
27.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
28.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
. Special Issue: Non-linear Structural Dynamics.
29.
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2014
, “
Frequency–Energy Plots of Steady State Solutions for Forced and Damped Systems, and Vibration Isolation by Nonlinear Mode Localization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2905
2917
.
30.
Haris
,
A.
,
Motato
,
E.
,
Mohammadpour
,
M.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
,
O’ Mahony
,
M.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2017
, “
On the Effect of Multiple Parallel Nonlinear Absorbers in Palliation of Torsional Response of Automotive Drivetrain
,”
Int. J. Non-Linear Mech.
,
96
, pp.
22
35
.
31.
EN1998-1.
,
2004
,
Eurocode 8: Design of Structures for Earthquake Resistance- Part 1: General Rules, Seismic Actions and Rules for Buildings
,
Standard. European Committee for Standardization
,
Brussels
.
32.
Rockwell
,
T. K.
, and
Klinger
,
Y.
,
2013
, “
Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics
,”
Bull. Seismological Soc. Am.
,
103
(
2A
), pp.
629
640
.
33.
Chassiakos
,
A. G.
, and
Masri
,
S. F.
,
1996
, “
Modelling Unknown Structural Systems Through the Use of Neural Networks
,”
Earthquake Eng. Struct. Dyn.
,
25
(
2
), pp.
117
128
.
34.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Rustighi
,
E.
,
2012
, “
Optimisation of Dynamic Vibration Absorbers to Minimize Kinetic Energy and Maximize Internal Power Dissipation
,”
J. Sound Vib.
,
331
(
18
), pp.
4093
4100
.
35.
Savor Novak
,
M.
,
Lazarevic
,
D.
,
Atalic
,
J.
, and
Uros
,
M.
,
2020
, “
Influence of Multiple Support Excitation on Seismic Response of Reinforced Concrete Arch Bridges
,”
Appl. Sci.
,
10
(
1
), p.
17
.
36.
Arias
,
A.
,
1970
,
A Measure of Earthquake Intensity.” Seismic Design for Nuclear Plants
,
MIT Press
,
Cambridge, MA
, pp.
438
483
.
37.
Dang
,
W.
,
Wang
,
Z.
, and
Chen
,
L.
,
2022
, “
A High-Efficient Nonlinear Energy Sink With a One-Way Energy Converter
,”
Nonlinear Dyn.
,
109
(
4
), pp.
2247
2261
.
You do not currently have access to this content.