Abstract

The dynamic behaviors of a pinned–pinned spinning exponentially functionally graded shaft with unbalanced loads are investigated. The shaft is simulated in the Rayleigh beam model considering rotary inertia and gyroscopic effects. The governing equation for the flexural vibration of the shaft is derived via the Hamilton principle. Based on the boundary conditions, both the exact and approximate whirl frequency equations of the system are obtained analytically. Also, the validity of the proposed model is confirmed by comparing it with the results reported in the literature. Finally, a numerical study on the basis of the analytical solutions is performed to evaluate the main parameters, including slenderness ratio (α), gradient index (β), mass ratio (μ), and eccentric distance (γ) on the whirl frequency, critical spinning speed, mode shapes, and stability of the system. The results reveal that the vibration and instability of the spinning shaft are strongly dependent on the unbalanced load and material gradient.

References

1.
Sankar
,
B. V.
,
2001
, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
689
696
.
2.
Zhong
,
Z.
, and
Yu
,
T.
,
2007
, “
Analytical Solution of a Cantilever Functionally Graded Beam
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
481
488
.
3.
Boggarapu
,
V.
,
Gujjala
,
R.
,
Ojha
,
S.
,
Acharya
,
S.
,
Venkateswara babu
,
P.
,
Chowdary
,
S.
, and
kumar Gara
,
D.
,
2021
, “
State of the Art in Functionally Graded Materials
,”
Compos. Struct.
,
262
(
5
), p.
113596
.
4.
Sheu
,
G. J.
, and
Yang
,
S. M.
,
2005
, “
Dynamic Analysis of a Spinning Rayleigh Beam
,”
Int. J. Mech. Sci.
,
47
(
2
), pp.
157
169
.
5.
Hosseini
,
S. A. A.
, and
Khadem
,
S. E.
,
2009
, “
Free Vibrations Analysis of a Rotating Shaft With Nonlinearities in Curvature and Inertia
,”
Mech. Mach. Theory
,
44
(
1
), pp.
272
288
.
6.
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Vibrations and Stability of an Axially Moving Timoshenko Beam With an Intermediate Spring Support
,”
Mech. Mach. Theory
,
67
, pp.
1
16
.
7.
Zhu
,
K.
, and
Chung
,
J.
,
2019
, “
Vibration and Stability Analysis of a Simply-Supported Rayleigh Beam With Spinning and Axial Motions
,”
Appl. Math. Model.
,
66
, pp.
362
382
.
8.
Wang
,
N.
, and
Jiang
,
D.
,
2018
, “
Vibration Response Characteristics of a Dual-Rotor With Unbalance-Misalignment Coupling Faults: Theoretical Analysis and Experimental Study
,”
Mech. Mach. Theory
,
125
, pp.
207
219
.
9.
Sahebkar
,
S. M.
,
Ghazavi
,
M. R.
,
Khadem
,
S. E.
, and
Ghayesh
,
M.
,
2011
, “
Nonlinear Vibration Analysis of an Axially Moving Drillstring System With Time Dependent Axial Load and Axial Velocity in Inclined Well
,”
Mech. Mach. Theory
,
46
(
5
), pp.
743
760
.
10.
Shahgholi
,
M.
, and
Khadem
,
S. E.
,
2012
, “
Primary and Parametric Resonances of Asymmetrical Rotating Shafts With Stretching Nonlinearity
,”
Mech. Mach. Theory
,
51
, pp.
131
144
.
11.
Cao
,
H.
,
Shi
,
F.
,
Li
,
Y.
,
Li
,
B.
, and
Chen
,
X.
,
2019
, “
Vibration and Stability Analysis of Rotor-Bearing-Pedestal System due to Clearance fit
,”
Mech. Syst. Signal Process
,
133
, p.
106275
.
12.
Li
,
Y.
,
Luo
,
Z.
,
Liu
,
J.
,
Ma
,
H.
, and
Yang
,
D.
,
2021
, “
Dynamic Modeling and Stability Analysis of a Rotor-Bearing System With Bolted-Disk Joint
,”
Mech. Syst. Signal Process
,
158
(
24
), p.
107778
.
13.
Li
,
C.
,
Miao
,
X.
,
Qiao
,
R.
, and
Tang
,
Q.
,
2021
, “
Modeling Method of Bolted Joints With Micro-Slip Features and Its Application in Flanged Cylindrical Shell
,”
Thin Walled Struct.
,
164
(
3–4
), p.
107854
.
14.
Tang
,
Q. S.
,
Li
,
C. F.
,
She
,
H. X.
, and
Wen
,
B. C.
,
2021
, “
Analysis of Frequency and Mode Shape of Rotating-Flexible Disk-Drum Coupled Structure With Non-Continuous Connections
,”
Int. J. Mech. Sci.
,
190
(
5
), p.
106004
.
15.
Afsar
,
A. M.
, and
Go
,
J.
,
2010
, “
Finite Element Analysis of Thermoelastic Field in a Rotating FGM Circular Disk
,”
Appl. Math. Model.
,
34
(
11
), pp.
3309
3320
.
16.
Ait Atmane
,
H.
,
Tounsi
,
A.
,
Meftah
,
S. A.
, and
Belhadj
,
H. A.
,
2011
, “
Free Vibration Behavior of Exponential Functionally Graded Beams With Varying Cross-Section
,”
J. Vib. Control
,
17
(
2
), pp.
311
318
.
17.
Sburlati
,
R.
,
2012
, “
Analytical Elastic Solutions for Pressurized Hollow Cylinders With Internal Functionally Graded Coatings
,”
Compos. Struct.
,
94
(
12
), pp.
3592
3600
.
18.
Pradhan
,
K. K.
, and
Chakraverty
,
S.
,
2013
, “
Free Vibration of Euler and Timoshenko Functionally Graded Beams by Rayleigh–Ritz Method
,”
Composites Part B
,
51
, pp.
175
184
.
19.
Liu
,
Y.
, and
Shu
,
D. W.
,
2014
, “
Free Vibration Analysis of Exponential Functionally Graded Beams With a Single Delamination
,”
Composites Part B
,
59
, pp.
166
172
.
20.
Shahgholi
,
M.
,
Khadem
,
S. E.
, and
Bab
,
S.
,
2014
, “
Free Vibration Analysis of a Nonlinear Slender Rotating Shaft With Simply Support Conditions
,”
Mech. Mach. Theory
,
82
(
3
), pp.
128
140
.
21.
Nejad
,
M. Z.
, and
Fatehi
,
P.
,
2015
, “
Exact Elasto-Plastic Analysis of Rotating Thick-Walled Cylindrical Pressure Vessels Made of Functionally Graded Materials
,”
Int. J. Eng. Sci.
,
86
, pp.
26
43
.
22.
Ebrahimi
,
F.
, and
Dashti
,
S.
,
2015
, “
Free Vibration Analysis of a Rotating Non-Uniform Functionally Graded Beam
,”
Steel Compos. Struct.
,
19
(
5
), pp.
1279
1298
.
23.
Qin
,
Z.
,
Pang
,
X.
,
Safaei
,
B.
, and
Chu
,
F.
,
2019
, “
Free Vibration Analysis of Rotating Functionally Graded CNT Reinforced Composite Cylindrical Shells With Arbitrary Boundary Conditions
,”
Compos. Struct.
,
220
, pp.
847
860
.
24.
Gayen
,
D.
,
Tiwari
,
R.
, and
Chakraborty
,
D.
,
2019
, “
Finite Element Based Stability Analysis of a Rotor-Bearing System Having a Functionally Graded Shaft With Transverse Breathing Cracks
,”
Int. J. Mech. Sci.
,
157
(
1–2
), pp.
403
414
.
25.
Jahangiri
,
M.
, and
Bagheri
,
E.
,
2021
, “
Effect of Radially Functionally Graded Materials on the Primary Resonances of Large Amplitude Flexural Vibration of In-Extensional Rotating Shafts
,”
Eng. Struct.
,
226
, p.
111362
.
26.
Hajisadeghian
,
A.
,
Masoumi
,
A.
, and
Parvizi
,
A.
,
2021
, “
Analytical Investigation of Elastic and Plastic Behavior of Rotating Double-Walled FGM-Homogenous Hollow Shafts
,”
Arch. Appl. Mech.
,
91
(
4
), pp.
1343
1369
.
27.
Bavi
,
R.
,
Hajnayeb
,
A.
,
Sedighi
,
H. M.
, and
Shishesaz
,
M.
,
2022
, “
Simultaneous Resonance and Stability Analysis of Unbalanced Asymmetric Thin-Walled Composite Shafts
,”
Int. J. Mech. Sci.
,
217
(
1
), p.
107047
.
28.
Şimşek
,
M.
,
Kocatürk
,
T.
, and
Akbaş
,
ŞD
,
2012
, “
Dynamic Behavior of an Axially Functionally Graded Beam Under Action of a Moving Harmonic Load
,”
Compos. Struct.
,
94
(
8
), pp.
2358
2364
.
29.
Li
,
X. F.
,
Kang
,
Y. A.
, and
Wu
,
J. X.
,
2013
, “
Exact Frequency Equations of Free Vibration of Exponentially Functionally Graded Beams
,”
Appl. Acoust.
,
74
(
3
), pp.
413
420
.
30.
Tang
,
A. Y.
,
Wu
,
J. X.
,
Li
,
X. F.
, and
Lee
,
K. Y.
,
2014
, “
Exact Frequency Equations of Free Vibration of Exponentially Non-Uniform Functionally Graded Timoshenko Beams
,”
Int. J. Mech. Sci.
,
89
, pp.
1
11
.
31.
Calim
,
F. F.
,
2016
, “
Transient Analysis of Axially Functionally Graded Timoshenko Beams With Variable Cross-Section
,”
Composites, Part B
,
98
, pp.
472
483
.
32.
Rezaiee-Pajand
,
M.
, and
Hozhabrossadati
,
S. M.
,
2016
, “
Analytical and Numerical Method for Free Vibration of Double-Axially Functionally Graded Beams
,”
Compos. Struct.
,
152
, pp.
488
498
.
33.
Zhao
,
Y.
,
Huang
,
Y.
, and
Guo
,
M.
,
2017
, “
A Novel Approach for Free Vibration of Axially Functionally Graded Beams With non-Uniform Cross-Section Based on Chebyshev Polynomials Theory
,”
Compos. Struct.
,
168
, pp.
277
284
.
34.
Huang
,
Y.
,
Wang
,
T.
,
Zhao
,
Y.
, and
Wang
,
P.
,
2018
, “
Effect of Axially Functionally Graded Material on Whirling Frequencies and Critical Speeds of a Spinning Timoshenko Beam
,”
Compos. Struct.
,
192
, pp.
355
367
.
35.
Ebrahimi-Mamaghani
,
A.
,
Forooghi
,
A.
,
Sarparast
,
H.
,
Alibeigloo
,
A.
, and
Friswell
,
M. I.
,
2021
, “
Vibration of Viscoelastic Axially Graded Beams with Simultaneous Axial and Spinning Motions Under an Axial Load
,”
Appl. Math. Model.
,
90
, pp.
131
150
.
36.
Wang
,
G. D.
, and
Yuan
,
H. Q.
,
2021
, “
Dynamics and Stability Analysis of an Axially Functionally Graded Hollow Rotor Partially Filled With Liquid
,”
Compos. Struct.
,
266
(
3
), p.
113821
.
37.
Wang
,
L.
,
Yang
,
J.
, and
Li
,
Y. H.
,
2021
, “
Nonlinear Vibration of a Deploying Laminated Rayleigh Beam With a Spinning Motion in Hygrothermal Environment
,”
Eng. Comput.
,
37
(
4
), pp.
3825
3841
.
38.
Kushwaha
,
N.
, and
Patel
,
V. N.
,
2023
, “
Nonlinear Dynamic Analysis of Two-Disk Rotor System Containing an Unbalance Influenced Transverse Crack
,”
Nonlinear Dyn.
,
111
(
4
), pp.
1109
1137
.
39.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
Nonlinear Forced Vibrations of Rotating Cylindrical Shells Under Multi-Harmonic Excitations in Thermal Environment
,”
Nonlinear Dyn.
,
108
(
4
), pp.
2977
2991
.
You do not currently have access to this content.