Abstract

This paper focuses on the radiation modes and efficiency of propeller tonal noise. The thickness noise and loading noise model of propellers has been formulated in spherical coordinates, thereby simplifying numerical evaluation of the integral noise source. More importantly, the radiation field can be decomposed and projected to spherical harmonics, which can separate source-observer positions and enable an analysis of sound field structures. Due to the parity of spherical harmonics, the proposed model can mathematically explain the fact that thrusts only produce antisymmetric sound waves with respect to the rotating plane. In addition, the symmetric components of the noise field can be attributed to the thickness, as well as drags and radial forces acting on the propeller surface. The radiation efficiency of each mode decays rapidly as noise sources approach the rotating center, suggesting the radial distribution of aerodynamic loadings should be carefully designed for low-noise propellers. The noise prediction model has been successfully applied to a drone propeller and achieved a reliable agreement with experimental measurements. The flow variables employed as an input of the noise computation were obtained with computational fluid dynamics (CFD), and the experimental data were measured in an anechoic chamber.

References

1.
Zhou
,
T.
,
Jiang
,
H.
,
Sun
,
Y.
,
Fattah
,
R. J.
,
Zhang
,
X.
,
Huang
,
B.
, and
Cheng
,
L.
,
2019
, “
Acoustic Characteristics of a Quad-Copter Under Realistic Flight Conditions
,”
25th AIAA/CEAS Aeroacoustics Conference
,
Delft, The Netherlands
,
May 20–23
, pp.
2019
2587
.
2.
Jiang
,
H.
,
Zhang
,
X.
, and
Huang
,
X.
,
2019
, “
Reduced-Basis Boundary Element Method for Efficient Broadband Acoustic Simulation
,”
J. Sound. Vib.
,
456
(
1
), pp.
374
385
.
3.
Jiang
,
H.
,
Zhou
,
T.
,
Fattah
,
R. J.
,
Zhang
,
X.
, and
Huang
,
X.
,
2019
, “
Multi-Rotor Noise Scattering by a Drone Fuselage
,”
25th AIAA/CEAS Aeroacoustics Conference
,
Delft, The Netherlands
,
May 20–23
, p.
2586
.
4.
Guerin
,
S.
,
Kissner
,
C. A.
,
Kajasa
,
B.
,
Jaron
,
R.
,
Behn
,
M.
,
Pardowitz
,
B.
,
Tapken
,
U.
,
Hakansson
,
S.
,
Meyer
,
R.
, and
Enghardt
,
L.
,
2019
, “
Noise Prediction of the ACAT1 Fan With a RANS-Informed Analytical Method: Success and Challenge
,”
25th AIAA/CEAS Aeroacoustics Conference
,
Delft, The Netherlands
,
May 20–23
, pp.
2019
2500
.
5.
Amiet
,
R. K.
,
1975
, “
Acoustic Radiation From An Airfoil in a Turbulent Stream
,”
J. Sound. Vib.
,
41
(
4
), pp.
407
420
.
6.
Amiet
,
R. K.
,
1976
, “
Noise Due to Turbulent Flow Past a Trailing Edge
,”
J. Sound. Vib.
,
47
(
3
), pp.
387
393
.
7.
Roger
,
M.
, and
Moreau
,
S.
,
2005
, “
Back-Scattering Correction and Further Extensions of Amiet’s Trailing-Edge Noise Model. Part 1: Theory
,”
J. Sound. Vib.
,
286
(
3
), pp.
477
506
.
8.
Gur
,
O.
, and
Rosen
,
A.
,
2008
, “
Comparison Between Blade-Element Models of Propellers
,”
Aeronaut. J.
,
112
(
1138
), pp.
689
704
.
9.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London. Seri., Math. Phys. Sci.
,
264
(
1151
), pp.
321
342
.
10.
Goldstein
,
M.
,
1974
, “
Unified Approach to Aerodynamic Sound Generation in the Presence of Solid Boundaries
,”
J. Acoust. Soc. Am.
,
56
(
2
), pp.
497
509
.
11.
Farassat
,
F.
,
1975
, “
Theory of Noise Generation from Moving Bodies with an Application to Helicopter Rotors
,” National Aeronautics and Space Administration.
12.
Farassat
,
F.
,
1981
, “
Linear Acoustic Formulas for Calculation of Rotating Blade Noise
,”
AIAA. J.
,
19
(
9
), pp.
1122
1130
.
13.
Farassat
,
F.
, and
Brentner
,
K. S.
,
1998
, “
The Acoustic Analogy and the Prediction of the Noise of Rotating Blades
,”
Theor. Computat. Fluid Dynam.
,
10
(
1–4
), pp.
155
170
.
14.
Farassat
,
F.
, and
Succi
,
G. P.
,
1980
, “
A Review of Propeller Discrete Frequency Noise Prediction Technology With Emphasis on Two Current Methods for Time Domain Calculations
,”
J. Sound. Vib.
,
71
(
3
), pp.
399
419
.
15.
Hanson
,
D. B.
,
1980
, “
Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field
,”
AIAA. J.
,
18
(
10
), pp.
1213
1220
.
16.
Hanson
,
D. B.
,
1985
, “
Near-Field Frequency-Domain Theory for Propeller Noise
,”
AIAA. J.
,
23
(
4
), pp.
499
504
.
17.
Hanson
,
D. B.
,
1992
, “
Direct Frequency Domain Calculation of Open Rotor Noise
,”
AIAA. J.
,
30
(
9
), pp.
2334
2337
.
18.
Hanson
,
D. B.
, and
Parzych
,
D. J.
,
1993
, “
Theory for Noise of Propellers in Angular Inflow with Parametric Studies and Experimental Verification
.” Technical Report CR 4499, NASA.
19.
Hanson
,
D.
,
1995
, “
Sound From a Propeller At Angle of Attack: a New Theoretical Viewpoint
,”
Proc. R. Soc. London., A.
,
449
(
1936
), pp.
315
328
.
20.
Catlett
,
M.
,
Anderson
,
J.
, and
Stewart
,
D.
,
2012
, “
Aeroacoustic Response of Propellers to Sheared Turbulent Inflow
,” AIAA Paper, p.
2137
.
21.
Zhong
,
S.
,
Zhou
,
P.
,
Fattah
,
R.
, and
Zhang
,
X.
,
2020
, “
A Revisit of the Tonal Noise of Small Rotors
,”
Proc. R. Soc. A
,
476
(
2244
), p.
20200491
.
22.
Chapman
,
C.
,
1990
, “
The Spiral Green Function in Acoustics and Electromagnetism
,”
Proc. R. Soc. London., A.
,
431
(
1881
), pp.
157
167
.
23.
Chapman
,
C.
,
1993
, “
The Structure of Rotating Sound Fields
,”
Proc. R. Soc. London., A.
,
440
(
1909
), pp.
257
271
.
24.
Carley
,
M.
,
1999
, “
Sound Radiation From Propellers in Forward Flight
,”
J. Sound. Vib.
,
225
(
2
), pp.
353
374
.
25.
Carley
,
M.
,
2000
, “
Propeller Noise Fields
,”
J. Sound. Vib.
,
233
(
2
), pp.
255
277
.
26.
Carley
,
M.
,
2006
, “
Series Expansion for the Sound Field of Rotating Sources
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1252
1256
.
27.
Carley
,
M.
,
2009
, “
Inversion of Spinning Sound Fields
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
690
697
.
28.
Carley
,
M. J.
,
2010
, “
Series Expansion for the Sound Field of a Ring Source
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3375
3380
.
29.
Mao
,
Y.
,
Gu
,
Y.
,
Qi
,
D.
, and
Tang
,
H.
,
2012
, “
An Exact Frequency-domain Solution of the Sound Radiated From the Rotating Dipole Point Source
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1294
1302
.
30.
Poletti
,
M.
,
2010
, “
Series Expansions of Rotating Two and Three Dimensional Sound Fields
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3363
3374
.
31.
Poletti
,
M.
, and
Teal
,
P.
,
2011
, “
Comparison of Methods for Calculating the Sound Field Due to a Rotating Monopole
,”
J. Acoust. Soc. Am.
,
129
(
6
), pp.
3513
3520
.
32.
Mao
,
Y.
, and
Xu
,
C.
,
2016
, “
Accelerated Method for Predicting Acoustic Far Field and Acoustic Power of Rotating Source
,”
AIAA. J.
,
54
(
2
), pp.
603
615
.
33.
Carley
,
M. J.
, and
Martin
,
P.
,
2012
, “
Jet Noise: Sound Generation by Disc and Cylinder Sources
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
468
(
2148
), pp.
3947
3964
.
34.
Dogruoz
,
M. B.
, and
Shankaran
,
G.
,
2017
, “
Computations with the Multiple Reference Frame Technique: Flow and Temperature Fields Downstream of An Axial Fan
,”
Num. Heat Trans., Part A: Appl.
,
71
(
5
), pp.
488
510
.
35.
Hobeika
,
T.
, and
Sebben
,
S.
,
2018
, “
CFD Investigation on Wheel Rotation Modelling
,”
J. Wind Eng. Indus. Aerodyn.
,
174
(
1
), pp.
241
251
.
36.
Zhang
,
Q.
,
Jaiman
,
R. K.
,
Ma
,
P.
, and
Liu
,
J.
,
2020
, “
Investigation on the Performance of a Ducted Propeller in Oblique Flow
,”
ASME J. Offshore Mech. Arctic Eng.
,
142
(
1
), p.
011801
.
37.
Yi
,
W.
,
Zhou
,
P.
,
Fang
,
Y.
,
Guo
,
J.
,
Zhong
,
S.
,
Zhang
,
X.
,
Huang
,
X.
,
Zhou
,
G.
, and
Chen
,
B.
,
2021
, “
Design and Characterization of a Multifunctional Low-Speed Anechoic Wind Tunnel at HKUST
,”
Aeros. Sci. Technol.
,
115
(
1
), p.
106814
.
38.
Stephenson
,
J. H.
,
Weitsman
,
D.
, and
Zawodny
,
N. S.
,
2019
, “
Effects of Flow Recirculation on Unmanned Aircraft System (uas) Acoustic Measurements in Closed Anechoic Chambers
,”
J. Acoust. Soc. Am.
,
145
(
3
), pp.
1153
1155
.
39.
Wu
,
H.
,
Chen
,
W.
,
Fattah
,
R.
,
Fang
,
Y.
,
Zhong
,
S.
, and
Zhang
,
X.
,
2020
, “
A Rotor Blade Aeroacoustics Test Platform At HKUST
,”
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
,
Seoul, South Korea
,
261
,
Institute of Noise Control Engineering
, pp.
2476
2484
.
40.
Brandt
,
J. B.
,
Deters
,
R. W.
,
Ananda
,
G. K.
, and
Selig
,
M.
,
University of Illinois at Urbana-Champaign. UIUC Propeller Database
. Vols.
1–3
, https://m-selig.ae.illinois.edu/props/propDB.html.
41.
Rienstra
,
S. W.
, and
Hirschberg
,
A.
,
2004
, “
An Introduction to Acoustics
,”
Eindhoven Univ. Technol.
,
18
, p.
19
.
You do not currently have access to this content.