Abstract

In this paper, the mode coupling between bending, stretching, and torsional deformations is mainly studied by presenting an analytical model of a rotating cantilever beam with pre-twist angle and arbitrary cross section. Equations of motion of the beam are derived using Hamilton's principle. The Coriolis effect due to the coupling of the bending deformation and stretching deformation, the eccentricity caused by inconsistency between elastic center and centroid, spin softening effect, stress stiffening effect, shear deformation, and rotary inertia are included in the model. Equations of motion are solved by the Rayleigh-Ritz method. The natural frequencies obtained by the proposed analytical modal are in good agreement with those obtained by finite element method (FEM) which proved the accuracy of the analytical model. Finally, the coupling between different mode components is studied in detail based on a quantitative method. The transformation/conversion between different mode components is revealed, the influence of rotational speed, setting angle, and pre-twist angle on this conversion mode is studied. Results show that a specific mode shape is usually composed of multiple mode components. The essence of mode coupling is the coupling between different mode components. The influence of rotational speed, setting angle, and pre-twist angle on the mode coupling is that they cause the transformation/conversion between different mode components.

References

1.
Stafford
,
R. O.
, and
Giurgiutiu
,
V.
,
1975
, “
Semi-Analytic Methods for Rotating Timoshenko Beams
,”
Int. J. Mech. Sci.
,
17
(
11–12
), pp.
719
727
.
2.
Du
,
H.
,
Lim
,
M. K.
, and
Liew
,
K. M.
,
1994
, “
A Power Series Solution for Vibration of a Rotating Timoshenko Beam
,”
J. Sound Vib.
,
175
(
4
), pp.
505
523
.
3.
Lin
,
S. C.
, and
Hsiao
,
K. M.
,
2001
, “
Vibration Analysis of a Rotating Timoshenko Beam
,”
J. Sound Vib.
,
240
(
2
), pp.
303
322
.
4.
Lee
,
S. Y.
, and
Sheu
,
J. J.
,
2007
, “
Free Vibration of an Extensible Rotating Inclined Timoshenko Beam
,”
J. Sound Vib.
,
304
(
3–5
), pp.
606
624
.
5.
Yokoyama
,
T.
,
1988
, “
Free Vibration Characteristics of Rotating Timoshenko Beams
,”
Int. J. Mech. Sci.
,
30
(
10
), pp.
743
755
.
6.
Yu
,
S. D.
, and
Cleghorn
,
W. L.
,
2000
, “
Free Vibration of a Spinning Stepped Timoshenko Beam
,”
ASME J. Appl. Mech.
,
67
(
4
), pp.
839
841
.
7.
Bazoune
,
A.
,
Khulief
,
Y. A.
,
Stephen
,
N. G.
, and
Mohiuddin
,
M. A.
,
2001
, “
Dynamic Response of Spinning Tapered Timoshenko Beams Using Modal Reduction
,”
Fin. Elem. Anal. Des.
,
37
(
3
), pp.
199
219
.
8.
Rao
,
S. S.
, and
Gupta
,
R. S.
,
2001
, “
Finite Element Vibration Analysis of Rotating Timoshenko Beams
,”
J. Sound Vib.
,
242
(
1
), pp.
103
124
.
9.
Hashemi
,
S. M.
, and
Richard
,
M. J.
,
2001
, “
Natural Frequencies of Rotating Uniform Beams With Coriolis Effects
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
444
455
.
10.
Oguamanam
,
D. C. D.
, and
Heppler
,
G. R.
,
1996
, “
Centrifugal Stiffening of Timoshenko Beams
,”
Structures, Structural Dynamics, and Materials and Co-Located Conferences
,
Salt Lake City, UT
,
Apr. 18–19
, pp.
306
315
.
11.
Fung
,
E. H. K.
, and
Yau
,
D. T. W.
,
1999
, “
Effects of Centrifugal Stiffening on the Vibration Frequencies of a Constrained Flexible Arm
,”
J. Sound Vib.
,
224
(
5
), pp.
809
841
.
12.
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2002
, “
Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
7
(
4
), pp.
357
387
.
13.
Adair
,
D.
, and
Jaeger
,
M.
,
2016
, “
Simulation of Tapered Rotating Beams With Centrifugal Stiffening Using the Adomian Decomposition Method
,”
Appl. Math. Model.
,
40
(
4
), pp.
3230
3241
.
14.
Roy
,
P. A.
, and
Meguid
,
S. A.
,
2018
, “
Analytical Modeling of the Coupled Nonlinear Free Vibration Response of a Rotating Blade in a Gas Turbine Engine
,”
Acta Mech.
,
229
(
8
), pp.
3355
3373
.
15.
Tian
,
J.
,
Su
,
J.
,
Zhou
,
K.
, and
Hua
,
H.
,
2018
, “
A Modified Variational Method for Nonlinear Vibration Analysis of Rotating Beams Including Coriolis Effects
,”
J. Sound Vib.
,
426
(
21
), pp.
258
277
.
16.
Sinha
,
S. K.
,
2005
, “
Non-Linear Dynamic Response of a Rotating Radial Timoshenko Beam With Periodic Pulse Loading at the Free-End
,”
Int. J. Non Linear Mech.
,
40
(
1
), pp.
113
149
.
17.
Sinha
,
S. K.
,
2007
, “
Combined Torsional-Bending Axial Dynamics of a Twisted Rotating Cantilever Timoshenko Beam With Contact-Impact Loads at the Free End
,”
ASME J. Appl. Mech.
,
74
(
8
), pp.
505
522
.
18.
Chen
,
Y.
,
Avitabile
,
P.
, and
Dodson
,
J.
,
2020
, “
Data Consistency Assessment Function (DCAF)
,”
Mech. Syst. Signal Process
,
141
, p.
106688
.
19.
Banerjee
,
J. R.
,
2000
, “
Free Vibration of Centrifugally Stiffened Uniform and Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
233
(
5
), pp.
857
875
.
20.
Banerjee
,
J. R.
,
Su
,
H.
, and
Jackon
,
D. R.
,
2006
, “
Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1034
1054
.
21.
Chen
,
Y.
,
Joffre
,
D.
, and
Avitabile
,
P.
,
2018
, “
Underwater Dynamic Response at Limited Points Expanded to Full-Field Strain Response
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051016
.
22.
Hodges
,
D. H.
, and
Dowell
,
E. H.
,
1974
, “
Nonlinear Equations of Motion for the Elastic and Torsion of Twisted Nonuniform Rotor Blades
,” NASA Technical Note.
23.
Subrahmanyam
,
K. B.
,
Kulkarni
,
S. V.
, and
Rao
,
J. S.
,
1981
, “
Coupled Bending-Torsion Vibrations of Rotating Blades of Asymmetric Aerofoil Cross Section With Allowance for Shear Deflection and Rotary Inertia by Use of the Reissner Method
,”
J. Sound Vib.
,
75
(
1
), pp.
17
36
.
24.
Filipich
,
C. P.
, and
Rosales
,
M. B.
,
1990
, “
Free Flexural-Torsional Vibration of a Uniform Spinning Beam
,”
J. Sound Vib.
,
141
(
3
), pp.
375
387
.
25.
Surace
,
G.
,
Anghel
,
V.
, and
Mares
,
C.
,
1997
, “
Coupled Bending-Bending-Torsion Vibration Analysis of Rotating Pretwisted Blades: An Integral Formulation and Numerical Examples
,”
J. Sound Vib.
,
206
(
4
), pp.
473
486
.
26.
Avramov
,
K. V.
,
Pierre
,
C.
, and
Shyriaieva
,
N.
,
2007
, “
Flexural-Flexural-Torsional Nonlinear Vibrations of Pre-Twisted Rotating Beams With Asymmetric Cross-Sections
,”
J. Sound Vib.
,
13
(
4
), pp.
329
364
.
27.
Avramov
,
K. V.
,
Pierre
,
C.
, and
Shyriaieva
,
N.
,
2008
, “
Nonlinear Equations of Flexural-Flexural-Torsional Oscillations of Rotating Beams With Arbitrary Cross-Section
,”
Int. Appl. Mech.
,
44
(
5
), pp.
123
132
.
28.
Chen
,
Y.
,
Zhang
,
B.
,
Zhang
,
N.
, and
Zheng
,
M.
,
2015
, “
A Condensation Method for the Dynamic Analysis of Vertical Vehicle–Track Interaction Considering Vehicle Flexibility
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041010
.
29.
Ozgumus
,
O. O.
, and
Kaya
,
M. O.
,
2007
, “
Energy Expressions and Free Vibration Analysis of a Rotating Double Tapered Timoshenko Beam Featuring Bending-Torsion Coupling
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
562
586
.
30.
Ozgumus
,
O. O.
, and
Kaya
,
M. O.
,
2013
, “
Energy Expressions and Free Vibration Analysis of a Rotating Timoshenko Beam Featuring Bending-Bending-Torsion Coupling
,”
Arch. Appl. Mech.
,
83
(
1
), pp.
97
108
.
31.
Chen
,
Y.
,
Logan
,
P.
,
Avitabile
,
P.
, and
Dodson
,
J.
,
2019
, “
Non-Model Based Expansion From Limited Points to an Augmented Set of Points Using Chebyshev Polynomials
,”
Exp. Tech.
,
43
, pp.
521
543
.
32.
Oh
,
Y.
, and
Yoo
,
H. H.
,
2018
, “
Vibration Analysis of a Rotating Pre-Twisted Blade Considering the Coupling Effects of Stretching, Bending, and Torsion
,”
J. Sound Vib.
,
421
, pp.
20
39
.
33.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Jalili
,
N.
,
2011
, “
Exact Frequency Analysis of a Rotating Cantilever Beam With Tip Mass Subjected to Torsional-Bending Vibrations
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041003
.
34.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
.
35.
Chen
,
Y.
,
Avitabile
,
P.
,
Page
,
C.
, and
Dodson
,
J.
,
2021
, “
A Polynomial Based Dynamic Expansion and Data Consistency Assessment and Modification for Cylindrical Shell Structures
,”
Mech. Syst. Signal Process
,
154
, p.
107574
.
36.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
, 4th ed.,
Pearson Education
,
San Antonio, TX
.
37.
Meirovitch
,
L.
,
1989
,
Analytical Methods in Vibrations
,
The Macmillan Company, Collier-Macmillan Limited
,
London
.
You do not currently have access to this content.