Abstract

This study aims at the systematical improvement and comparative analysis of analytical crack models for the rotating blade. Part I of this study focuses on analytical modeling, model modification, and model validation of transverse crack for the rotating blade. The most widely applied analytical crack models for the rotating blade are reviewed and compared, and then their limitations are discussed. It is indicated that the conventional analytical crack models suffer from low physical interpretability and vibration prediction accuracy. By considering these limitations of conventional analytical crack models, model modification is performed to enhance the physical meaning and improve the accuracy. First, the stress-based breathing crack model is modified by direct calculation of the breathing function based on the theory of linear elastic fracture mechanics and resetting the correction factor of centrifugal stiffening stiffness. Second, the vibration-based breathing crack models, including bilinear breathing crack model and cosine breathing crack model, are modified by introducing the coupling effect between bending stress and centrifugal stress based on the stress state at the blade crack section. The additional bending moment induced by the blade part outside the crack section is considered in all analytical models. The modified crack models’ validity is verified by comparing vibration responses obtained by the modified crack models, the finite element contact crack model, and the conventional crack models. The comparative results suggest that the modified models promote the physical interpretability and improve the vibration prediction accuracy of analytical crack models.

References

1.
Abdelrhman
,
A. M.
,
Leong
,
M. S.
,
Saeed
,
S. A. M.
, and
Al Obiadi
,
S. M.
,
2012
, “
A Review of Vibration Monitoring as a Diagnostic Tool for Turbine Blade Faults
,”
Appl. Mech. Mater.
,
229–231
(
2012
), pp.
1459
1463
. 10.4028/www.scientific.net/AMM.229-231.1459
2.
Carter
,
T. J.
,
2005
, “
Common Failures in Gas Turbine Blades
,”
Eng. Failure Anal.
,
12
(
2
), pp.
237
247
. 10.1016/j.engfailanal.2004.07.004
3.
Yang
,
L.
,
Chen
,
X.
, and
Wang
,
S.
,
2018
, “
Mechanism of Fast Time-Varying Vibration for Rotor–Stator Contact System: With Application to Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
014501
. 10.1115/1.4037509
4.
Gates
,
D.
,
2018
, “
Rolls-Royce Spending Millions of Dollars to Repair 787 Engines
.”
Seattle Times
.
5.
Abdelrhman
,
A. M.
,
Hee
,
L. M.
,
Leong
,
M.
, and
Al-Obaidi
,
S.
,
2014
, “
Condition Monitoring of Blade in Turbomachinery: A Review
,”
Adv. Mech. Eng.
,
6
, pp.
210717
. 10.1155/2014/210717
6.
Gubran
,
A.
,
2015
, “
Vibration Diagnosis of Blades of Rotating Machines
,” Ph.D. thesis,
University of Manchester
,
Manchester
.
7.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade—Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
. 10.1007/s11071-015-2535-x
8.
Rafiee
,
M.
,
Nitzsche
,
F.
, and
Labrosse
,
M.
,
2017
, “
Dynamics, Vibration and Control of Rotating Composite Beams and Blades: A Critical Review
,”
Thin-Walled Struct.
,
119
, pp.
795
819
. 10.1016/j.tws.2017.06.018
9.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Process.
,
87
, pp.
71
90
. 10.1016/j.ymssp.2016.09.041
10.
Wang
,
L.
,
Cao
,
D.
, and
Huang
,
W.
,
2010
, “
Nonlinear Coupled Dynamics of Flexible Blade–Rotor–Bearing Systems
,”
Tribol. Int.
,
43
(
4
), pp.
759
778
. 10.1016/j.triboint.2009.10.016
11.
Ma
,
H.
,
Lu
,
Y.
,
Wu
,
Z.
,
Tai
,
X.
,
Li
,
H.
, and
Wen
,
B.
,
2015
, “
A New Dynamic Model of Rotor–Blade Systems
,”
J. Sound. Vib.
,
357
, pp.
168
194
. 10.1016/j.jsv.2015.07.036
12.
She
,
H.
,
Li
,
C.
,
Tang
,
Q.
, and
Wen
,
B.
,
2018
, “
The Investigation of the Coupled Vibration in a Flexible-Disk Blades System Considering the Influence of Shaft Bending Vibration
,”
Mech. Syst. Signal Process.
,
111
, pp.
545
569
. 10.1016/j.ymssp.2018.03.044
13.
Ma
,
H.
,
Xie
,
F.
,
Nai
,
H.
, and
Wen
,
B.
,
2016
, “
Vibration Characteristics Analysis of Rotating Shrouded Blades With Impacts
,”
J. Sound Vib.
,
378
, pp.
92
108
. 10.1016/j.jsv.2016.05.038
14.
Sinha
,
S. K.
, and
Turner
,
K. E.
,
2011
, “
Natural Frequencies of a Pre-Twisted Blade in a Centrifugal Force Field
,”
J. Sound Vib.
,
330
(
11
), pp.
2655
2681
. 10.1016/j.jsv.2010.12.017
15.
Oh
,
Y.
, and
Yoo
,
H. H.
,
2018
, “
Vibration Analysis of a Rotating Pre-Twisted Blade Considering the Coupling Effects of Stretching, Bending, and Torsion
,”
J. Sound Vib.
,
431
, pp.
20
39
. 10.1016/j.jsv.2018.05.030
16.
Batailly
,
A.
,
Meingast
,
M.
, and
Legrand
,
M.
,
2015
, “
Unilateral Contact Induced Blade/Casing Vibratory Interactions in Impellers: Analysis for Rigid Casings
,”
J. Sound Vib.
,
337
, pp.
244
262
. 10.1016/j.jsv.2014.10.010
17.
Yuan
,
J.
,
Scarpa
,
F.
,
Titurus
,
B.
,
Allegri
,
G.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Novel Frame Model for Mistuning Analysis of Bladed Disk Systems
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031016
. 10.1115/1.4036110
18.
Xie
,
F.
,
Ma
,
H.
,
Cui
,
C.
, and
Wen
,
B.
,
2017
, “
Vibration Response Comparison of Twisted Shrouded Blades Using Different Impact Models
,”
J. Sound Vib.
,
397
, pp.
171
191
. 10.1016/j.jsv.2017.02.056
19.
Ma
,
H.
,
Lu
,
Y.
,
Wu
,
Z.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
Vibration Response Analysis of a Rotational Shaft–Disk–Blade System With Blade-Tip Rubbing
,”
Int. J. Mech. Sci.
,
107
, pp.
110
125
. 10.1016/j.ijmecsci.2015.12.026
20.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2017
, “
Nonlinear Dynamics of Mistuned Bladed Disks With Ring Dampers
,”
Int. J. Non-Linear Mech.
,
97
), pp.
30
40
. 10.1016/j.ijnonlinmec.2017.08.001
21.
Yu
,
P.
,
Zhang
,
D.
,
Ma
,
Y.
, and
Hong
,
J.
,
2018
, “
Dynamic Modeling and Vibration Characteristics Analysis of the Aero-Engine Dual-Rotor System With Fan Blade Out
,”
Mech. Syst. Signal Process.
,
106
(
2018
), pp.
158
175
. 10.1016/j.ymssp.2017.12.012
22.
Yang
,
L.
,
Chen
,
X.
, and
Wang
,
S.
,
2018
, “
A Novel Amplitude-Independent Crack Identification Method for Rotating Shaft
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
22
), pp.
4098
4112
. 10.1177/0954406217748686
23.
Chasalevris
,
A. C.
, and
Papadopoulos
,
C. A.
,
2006
, “
Identification of Multiple Cracks in Beams Under Bending
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1631
1673
. 10.1016/j.ymssp.2006.03.008
24.
Zhang
,
K.
, and
Yan
,
X.
,
2017
, “
Multi-Cracks Identification Method for Cantilever Beam Structure With Variable Cross-Sections Based on Measured Natural Frequency Changes
,”
J. Sound Vib.
,
387
, pp.
53
65
. 10.1016/j.jsv.2016.09.028
25.
Li
,
B.
,
Chen
,
X.
,
Ma
,
J.
, and
He
,
Z.
,
2005
, “
Detection of Crack Location and Size in Structures Using Wavelet Finite Element Methods
,”
J. Sound Vib.
,
285
(
4–5
), pp.
767
782
. 10.1016/j.jsv.2004.08.040
26.
Giannini
,
O.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2013
, “
Nonlinear Harmonic Identification of Breathing Cracks in Beams
,”
Comput. Struct.
,
129
, pp.
166
177
. 10.1016/j.compstruc.2013.05.002
27.
Zeng
,
J.
,
Ma
,
H.
,
Zhang
,
W.
, and
Wen
,
B.
,
2017
, “
Dynamic Characteristic Analysis of Cracked Cantilever Beams Under Different Crack Types
,”
Eng. Failure Anal.
,
74
, pp.
80
94
. 10.1016/j.engfailanal.2017.01.005
28.
Bovsunovsky
,
A.
, and
Surace
,
C.
,
2015
, “
Non-Linearities in the Vibrations of Elastic Structures With a Closing Crack: A State of the Art Review
,”
Mech. Syst. Signal Process.
,
62
, pp.
129
148
. 10.1016/j.ymssp.2015.01.021
29.
Douka
,
E.
, and
Hadjileontiadis
,
L.
,
2005
, “
Time–Frequency Analysis of the Free Vibration Response of a Beam With a Breathing Crack
,”
NDT & E Int.
,
38
(
1
), pp.
3
10
. 10.1016/j.ndteint.2004.05.004
30.
Rezaee
,
M.
, and
Hassannejad
,
R.
,
2010
, “
Free Vibration Analysis of Simply Supported Beam With Breathing Crack Using Perturbation Method
,”
Acta Mech. Sol. Sin.
,
23
(
5
), pp.
459
470
. 10.1016/S0894-9166(10)60048-1
31.
Vigneshwaran
,
K.
, and
Behera
,
R.
,
2014
, “
Vibration Analysis of a Simply Supported Beam With Multiple Breathing Cracks
,”
Procedia Eng.
,
86
, pp.
835
842
. 10.1016/j.proeng.2014.11.104
32.
Andreaus
,
U.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2007
, “
Non-Linear Dynamics of a Cracked Cantilever Beam Under Harmonic Excitation
,”
Int. J. Non-Linear Mech.
,
42
(
3
), pp.
566
575
. 10.1016/j.ijnonlinmec.2006.08.007
33.
Andreaus
,
U.
, and
Baragatti
,
P.
,
2011
, “
Cracked Beam Identification by Numerically Analysing the Nonlinear Behaviour of the Harmonically Forced Response
,”
J. Sound Vib.
,
330
(
4
), pp.
721
742
. 10.1016/j.jsv.2010.08.032
34.
Ma
,
H.
,
Zeng
,
J.
,
Lang
,
Z.
,
Zhang
,
L.
,
Guo
,
Y.
, and
Wen
,
B.
,
2016
, “
Analysis of the Dynamic Characteristics of a Slant-Cracked Cantilever Beam
,”
Mech. Syst. Signal Process.
,
75
, pp.
261
279
. 10.1016/j.ymssp.2015.12.009
35.
Zhang
,
W.
,
Ma
,
H.
,
Zeng
,
J.
,
Wu
,
S.
, and
Wen
,
B.
,
2017
, “
Vibration Responses Analysis of an Elastic-Support Cantilever Beam With Crack and Offset Boundary
,”
Mech. Syst. Signal Process.
,
95
, pp.
205
218
. 10.1016/j.ymssp.2017.03.032
36.
Liu
,
C.
, and
Jiang
,
D.
,
2014
, “
Crack Modeling of Rotating Blades With Cracked Hexahedral Finite Element Method
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
406
423
. 10.1016/j.ymssp.2014.01.007
37.
Huang
,
B.-W.
, and
Kuang
,
J.-H.
,
1998
, “
Mode Localization of a Cracked Blade-Disks
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition Vol. 5 of Power for Land, Sea, and Air
,
Stockholm, Sweden
,
June 2–5
, American Society ofMechanical Engineers, p. V005T14A013.
38.
Huang
,
B.-W.
, and
Kuang
,
J.-H.
,
2006
, “
Variation in the Stability of a Rotating Blade Disk With a Local Crack Defect
,”
J. Sound Vib.
,
294
(
3
), pp.
486
502
. 10.1016/j.jsv.2005.11.028
39.
Panigrahi
,
B.
, and
Pohit
,
G.
,
2018
, “
Effect of Cracks on Nonlinear Flexural Vibration of Rotating Timoshenko Functionally Graded Material Beam Having Large Amplitude Motion
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
6
), pp.
930
940
. 10.1177/0954406217694213
40.
Kim
,
S.-S.
, and
Kim
,
J.-H.
,
2003
, “
Rotating Composite Beam With a Breathing Crack
,”
Compos. Struct.
,
60
(
1
), pp.
83
90
. 10.1016/S0263-8223(02)00291-X
41.
Xu
,
H.
,
Chen
,
Z.
,
Xiong
,
Y.
,
Yang
,
Y.
, and
Tao
,
L.
,
2016
, “
Nonlinear Dynamic Behaviors of Rotated Blades With Small Breathing Cracks Based on Vibration Power Flow Analysis
,”
Shock Vib.
,
2016
, pp.
1
11
.
42.
Xu
,
H.
,
Chen
,
Z.
,
Yang
,
Y.
,
Tao
,
L.
, and
Chen
,
X.
,
2017
, “
Effects of Crack on Vibration Characteristics of Mistuned Rotated Blades
,”
Shock Vib.
,
2017
, p.
1
19
.
43.
Saito
,
A.
,
2009
, “
Nonlinear Vibration Analysis of Cracked Structures: Application to Turbo-machinery Rotors With Cracked Blades
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
44.
Zhao
,
C.
,
Zeng
,
J.
,
Ma
,
H.
,
Ni
,
K.
, and
Wen
,
B.
,
2020
, “
Dynamic Analysis of Cracked Rotating Blade Using Cracked Beam Element
,”
Res. Phys.
,
19
, pp.
103360
.
45.
Xie
,
J.
,
Zi
,
Y.
,
Zhang
,
M.
, and
Luo
,
Q.
,
2019
, “
A Novel Vibration Modeling Method for a Rotating Blade With Breathing Cracks
,”
Sci. China Technol. Sci.
,
62
(
2
), pp.
333
348
. 10.1007/s11431-018-9286-5
46.
Dimarogonas
,
A. D.
,
Paipetis
,
S. A.
, and
Chondros
,
T. G.
,
2013
,
Analytical Methods in Rotor Dynamics
,
Springer Science & Business Media
,
New York, NY
.
47.
Tata
,
H.
,
Paris
,
P.
, and
Irwin
,
G.
,
2000
,
The Stress Analysis of Crack Handbook
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.