Abstract

The simulation of the coupling between components modeled by finite elements (FEs) plays an important role for the prediction of the forced response of the assembly in terms of resonant frequencies, vibration amplitudes, and damping. This is particularly critical when the time-varying stress distribution must be limited for vibrating components with thin thickness coupled with large contacts. Typical examples can be found in aeronautical structures (plates, panels, and bladed disk components) assembled with bolted flanges, riveted lap joints, or joints without hole discontinuities like rail-hook joints, lace wire sealings, and strip dampers. In this paper, a new test rig is introduced for the experimental validation of a reduced-order model (ROM) based on the Gram–Schmidt Interface (GSI) modes applied to a friction contact whose dimensions are not negligible with respect to the size of the substructures. In this case, classical approaches like Craig–Bampton technique might be not effective in reducing the size of the problem when many contact nodes subjected to nonlinear contact loads cannot be omitted. The technique is implemented in a solution scheme in the frequency domain using penalty contact elements and the harmonic balance method. The preload on the joint is produced by permanent magnets to enhance the friction contact without introducing uncertainties due to bolting. Measurements are compared with the ROM simulations and with standard time-domain integration of the full FE model. The advantage of using the GSI technique is shown in terms of time computation and accuracy of the simulation.

References

1.
Bograd
,
S.
,
Reuss
,
P.
,
Schmidt
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
. 10.1016/j.ymssp.2011.01.010
2.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3–5
), pp.
857
936
. 10.1016/j.jsv.2003.11.064
3.
Mathis
,
A.
,
Balaji
,
N. N.
,
Kuether
,
R.
,
Brink
,
A.
,
Brake
,
M. R. W.
, and
Quinn
,
D. D.
,
2020
, “
A Review of Damping Models for Structures With Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040802
. 10.1115/1.4047707
4.
Coppolino
,
R. N.
,
2011
, “
DOF Reduction Strategy for Large Order Finite Element Models
,”
Proceedings of the 29th IMAC, A Conference on Structural Dynamics
,
Jacksonville, FL
,
Jan. 31–Feb. 3
.
5.
Hughes
,
P. J.
,
Scott
,
W.
,
Wu
,
W.
,
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Tiso
,
P.
,
2019
,
Interface Reduction on Hurty/Craig-Bampton Substructures With Frictionless Contact
,
Nonlinear Dynamics, Springer
,
Cham
, Vol.
1
,
1
16
.
6.
Firrone
,
C. M.
,
Battiato
,
G.
, and
Epureanu
,
B. I.
,
2018
, “
Modeling the Microslip in the Flange Joint and Its Effect on the Dynamics of Multi-Stage Bladed Disks
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011011
. 10.1115/1.4037796
7.
Yang
,
B. D.
,
Chu
,
M. L.
, and
Menq
,
C. H.
,
1998
, “
Stick–Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
. 10.1006/jsvi.1997.1305
8.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2009
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea and Air
,
Orlando, FL
,
June 8–12
,
GT2009-59201
.
9.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2006
, “
Effects of Damping and Varying Contact Area at Blade-Disk Joints in Forced Response Analysis of Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
128
(
2
), pp.
403
410
. 10.1115/1.2181998
10.
Pourkiaee
,
S. M.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011031
. 10.1115/1.4041653
11.
Yuan
,
J.
,
Salles
,
L.
,
El Haddad
,
F.
, and
Wong
,
C.
,
2020
, “
An Adaptive Component Mode Synthesis Method for Dynamic Analysis of Jointed Structure With Contact Friction Interfaces
,”
Comput. Struct.
,
229
, p.
106177
. 10.1016/j.compstruc.2019.106177
12.
Kuether
,
R. J.
,
Coffin
,
P. B.
, and
Brink
,
A. R.
,
2017
, “
On Hurty/Craig-Bampton Substructuring With Interface Reduction on Contacting Surfaces
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, Vol.
58226
, American Society of Mechanical Engineers.
13.
Hughes
,
P.
,
Scott
,
W. E.
, and
Wu
,
W.
,
2017
,
Interface Reduction on Hurty/Craig-Bampton Substructures With Mechanical Joints (No. SAND2017-7824C)
,
Sandia National Lab (SNL-NM)
,
Albuquerque, NM
.
14.
Battiato
,
G.
,
Firrone
,
C. M.
,
Berruti
,
T. M.
, and
Epureanu
,
B. I.
,
2018
, “
Reduced Order Modeling for Multistage Bladed Disks With Friction Contacts at the Flange Joint
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052505
. 10.1115/1.4038348
15.
Singh
,
A.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2020
, “
Substructure Interface Reduction With Iwan Elements to Capture Nonlinearity
,”
38th International Modal Analysis Conference (IMAC XXXVIII)
,
Houston, TX
,
Feb. 10–13
.
16.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
A Complete Strategy for Efficient and Accurate Multibody Dynamics of Flexible Structures With Large Lap Joints Considering Contact and Friction
,”
Multibody Syst. Dynam.
,
40
(
4
), pp.
407
436
. 10.1007/s11044-016-9555-2
17.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2016
, “
A ‘Nodeless’ Dual Superelement Formulation for Structural and Multibody Dynamics Application to Reduction of Contact Problems
,”
Int. J. Numer. Methods Eng.
,
106
(
10
), pp.
773
798
. 10.1002/nme.5136
18.
Battiato
,
G.
,
Firrone
,
C. M.
,
Berruti
,
T. M.
, and
Epureanu
,
B. I.
,
2018
, “
Reduction and Coupling of Substructures via Gram–Schmidt Interface Modes
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
187
212
. 10.1016/j.cma.2018.03.001
19.
Battiato
,
G.
, and
Firrone
,
C. M.
,
2018
, “
Reduced Order Modeling for Forced Response Prediction of Structures With Large Contact Interfaces
,”
Proceedings of ISMA Conference
,
Leuven, Belgium
,
Sept. 17–19
, pp.
4063
4074
.
20.
Battiato
,
G.
, and
Firrone
,
C. M.
,
2020
, “
A Modal Based Reduction Technique for Wide Loose Interfaces and Application to a Turbine Stator
,”
Mech. Syst. Signal Process.
,
139
, p.
106415
. 10.1016/j.ymssp.2019.106415
21.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1–4
), pp.
169
181
. 10.1007/BF01177306
22.
Esteban
,
J.
, and
Rogers
,
C. A.
,
2000
, “
Energy Dissipation Through Joints: Theory and Experiments
,”
Comput. Struct.
,
75
(
4
), pp.
347
359
. 10.1016/S0045-7949(99)00096-6
23.
Lee
,
U.
,
2001
, “
Dynamic Characterization of the Joints in a Beam Structure by Using Spectral Element Method
,”
Shock Vib.
,
8
(
6
), pp.
357
366
. 10.1155/2001/254020
24.
Songa
,
Y.
,
Hartwigsenb
,
C. J.
,
McFarlanda
,
D. M.
,
Vakakisb
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1–2
), pp.
249
276
. 10.1016/S0022-460X(03)00499-1
25.
Gross
,
J.
,
Armand
,
J.
,
Lacayo
,
R. M.
,
Reuss
,
P.
,
Salles
,
L.
,
Schwingshackl
,
C. W.
,
Brake
,
M. R. W.
, and
Kuether
,
R. J.
,
2016
,
Dynamics of Coupled Structures
, Springer, Vol.
4
,
Springer
,
Switzerland
, pp.
195
211
.
26.
Gruber
,
F. M.
, and
Rixen
,
D. J.
,
2016
, “
Evaluation of Substructure Reduction Techniques With Fixed and Free Interfaces
,”
J. Mech. Eng.
,
62
(
7–8
), pp.
452
462
. 10.5545/sv-jme.2016.3735
27.
Castanier
,
M. P.
,
Yung-Chang
,
T.
, and
Pierre
,
C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(
6
), pp.
1182
1187
. 10.2514/2.1433
28.
Strang
,
G.
,
1993
,
Introduction to Linear Algebra
,
Wellesley-Cambridge Press
,
Wellesley, MA
.
29.
Balaji
,
N. N.
,
Chen
,
W.
, and
Brake
,
M. R. W.
,
2020
, “
Traction-Based Multi-Scale Nonlinear Dynamic Modeling of Bolted Joints: Formulation, Application, and Trends in Micro-Scale Interface Evolution
,”
Mech. Syst. Signal Process.
,
139
, p.
106615
. 10.1016/j.ymssp.2020.106615
30.
Lopes
,
J. P.
, and
Hills
,
D. A.
,
2019
, “
The Axisymmetric Frictional Receding Contact of a Layer Pressed Against a Half-Space by a Point Force
,”
Int. J. Solids Struct.
,
171
, pp.
47
53
. 10.1016/j.ijsolstr.2019.05.007
31.
Schwingshackl
,
C.
,
Di Maio
,
D.
,
Sever
,
I. A.
, and
Green
,
J. S.
,
2013
, “
Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122504
.10.1115/1.4025146
32.
Lacayo
,
R. M.
,
Pesaresi
,
L.
,
Gross
,
J.
,
Fochler
,
D.
,
Armand
,
J.
,
Salles
,
L.
,
Schwingshackl
,
C. W.
,
Allen
,
M.
, and
Brake
,
M. R. W.
,
2019
, “
Nonlinear Modeling of Structures with Bolted Joints: A Comparison of Two Approaches Based on a Time-Domain and Frequency-Domain Solver
,”
Mech. Syst. Sig. Process.
,
114
, pp.
413
438
. 10.1016/j.ymssp.2018.05.033
33.
Willner
,
K.
,
2018
, “
Identification of Contact Parameters for Dry Friction Joints
,”
Proceedings of ISMA Conference
,
Leuven, Belgium
,
Sept. 17–19
, pp.
1777
1787
.
34.
Brake
,
M. R. W.
,
Stark
,
J. G.
,
Smith
,
S. A.
,
Lancereau
,
D. P. T.
,
Jerome
,
T. W.
, and
Dossogne
,
T.
,
2017
,
Dynamics of Coupled Structures
, Vol.
4
,
M.
Allen
,
R.
Mayes
, and
D.
Rixen
, eds., Conference Proceedings of the Society for Experimental Mechanics Series,
Springer
,
Switzerland
.
You do not currently have access to this content.