Abstract

A new three-dimensional moving Timoshenko beam element is developed for dynamic analysis of a moving load problem with a very long beam structure. The beam has small deformations and rotations, and bending, shear, and torsional deformations of the beam are considered. Since the dynamic responses of the beam are concentrated on a small region around the moving load and most of the long beam is at rest, owing to the damping effect, the beam is truncated with a finite length. A control volume that is attached to the moving load is introduced, which encloses the truncated beam, and a reference coordinate system is established on the left end of the truncated beam. The arbitrary Lagrangian–Euler method is used to describe the relationship of the position of a particle on the beam between the reference coordinate system and the global coordinate system. The truncated beam is spatially discretized using the current beam elements. Governing equations of a moving element are derived using Lagrange’s equations. While the whole beam needs to be discretized in the finite element method or modeled in the modal superposition method (MSM), only the truncated beam is discretized in the current formulation, which greatly reduces degrees-of-freedom and increases the efficiency. Furthermore, the efficiency of the present beam element is independent of the moving load speed, and the critical or supercritical speed range of the moving load can be analyzed through the present method. After the validation of the current formulation, a dynamic analysis of three-dimensional train–track interaction with a non-ballasted track is conducted. Results are in excellent agreement with those from the commercial software simpack where the MSM is used, and the calculation time of the current formulation is one-third of that of simpack. The current beam element is accurate and more efficient than the MSM for moving load problems of long three-dimensional beams. The derivation of the current beam element is straightforward, and the beam element can be easily extended for various other moving load problems.

References

1.
Andersen
,
L.
,
Nielsen
,
S. R. K.
, and
Kirkegaard
,
P. H.
,
2001
, “
Finite Element Modelling of Infinite Euler Beams on Kelvin Foundations Exposed to Moving Loads in Convected Co-Ordinates
,”
J. Sound Vib.
,
241
(
4
), pp.
587
604
. 10.1006/jsvi.2000.3314
2.
Koh
,
C. G.
,
Ong
,
J. S. Y.
,
Chua
,
D. K. H.
, and
Feng
,
J.
,
2003
, “
Moving Element Method for Train-Track Dynamics
,”
Int. J. Numer. Methods Eng.
,
56
(
11
), pp.
1549
1567
. 10.1002/nme.624
3.
Sun
,
L.
,
2001
, “
A Closed-Form Solution of a Bernoulli-Euler Beam on a Viscoelastic Foundation Under Harmonic Line Loads
,”
J. Sound Vib.
,
242
(
4
), pp.
619
627
. 10.1006/jsvi.2000.3376
4.
Verichev
,
S. N.
, and
Metrikine
,
A. V.
,
2002
, “
Instability of a Bogie Moving on a Flexibly Supported Timoshenko Beam
,”
J. Sound Vib.
,
253
(
3
), pp.
653
668
. 10.1006/jsvi.2001.4069
5.
Chen
,
Y. H.
,
Huang
,
Y. H.
, and
Shih
,
C. T.
,
2001
, “
Response of an Infinite Tomoshenko Beam on a Viscoelastic Foundation to a Harmonic Moving Load
,”
J. Sound Vib.
,
241
(
5
), pp.
809
824
. 10.1006/jsvi.2000.3333
6.
Sun
,
L.
,
2003
, “
An Explicit Representation of Steady State Response of a Beam on an Elastic Foundation to Moving Harmonic Line Loads
,”
Int. J. Numer. Anal. Methods Geomech.
,
27
(
1
), pp.
69
84
. 10.1002/nag.263
7.
Wolfert
,
A. R. M.
,
Dieterman
,
H. A.
, and
Metrikine
,
A. V.
,
1998
, “
Stability of Vibrations of Two Oscillators Moving Uniformly Along a Beam on a Viscoelastic Foundation
,”
J. Sound Vib.
,
211
(
5
), pp.
829
842
. 10.1006/jsvi.1997.1392
8.
Ahmadian
,
M. T.
,
Jafari-Talookolaei
,
R. A.
, and
Esmailzadeh
,
E.
,
2008
, “
Dynamics of a Laminated Composite Beam on Pasternak-Viscoelastic Foundation Subjected to a Moving Oscillator
,”
J. Vib. Control
,
14
(
6
), pp.
807
830
. 10.1177/1077546307083989
9.
Adam
,
C.
,
Di Lorenzo
,
S.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2017
, “
On the Moving Load Problem in Beam Structures Equipped With Tuned Mass Dampers
,”
Meccanica
,
52
(
13
), pp.
3101
3115
. 10.1007/s11012-016-0599-4
10.
Galvín
,
P.
,
Romero
,
A.
, and
Domínguez
,
J.
,
2010
, “
Fully Three-Dimensional Analysis of High-Speed Traintracksoil-Structure Dynamic Interaction
,”
J. Sound Vib.
,
329
(
24
), pp.
5147
5163
. 10.1016/j.jsv.2010.06.016
11.
Saito
,
H.
, and
Terasawa
,
T.
,
1980
, “
Steady-State Vibrations of a Beam on a Pasternak Foundation for Moving Loads
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
879
883
. 10.1115/1.3153807
12.
Sun
,
L.
,
2002
, “
A Closed-Form Solution of Beam on Viscoelastic Subgrade Subjected to Moving Loads
,”
Comput. Struct.
,
80
(
1
), pp.
1
8
. 10.1016/S0045-7949(01)00162-6
13.
Kim
,
S.-M.
, and
Roesset
,
J. M.
,
2003
, “
Dynamic Response of a Beam on a Frequency-Independent Damped Elastic Foundation to Moving Load
,”
Can. J. Civ. Eng.
,
30
(
2
), pp.
460
467
. 10.1139/l02-109
14.
Yu
,
H.
, and
Yuan
,
Y.
,
2014
, “
Analytical Solution for an Infinite Euler-Bernoulli Beam on a Viscoelastic Foundation Subjected to Arbitrary Dynamic Loads
,”
J. Eng. Mech.
,
140
(
3
), pp.
542
551
. 10.1061/(ASCE)EM.1943-7889.0000674
15.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M. F.
, and
Pinto Da Costa
,
A.
,
2017
, “
Universal Analytical Solution of the Steady-State Response of an Infinite Beam on a Pasternak Elastic Foundation Under Moving Load
,”
Int. J. Solids Struct.
,
132–133
, pp.
245
263
. 10.1016/j.ijsolstr.2017.10.005
16.
Shamalta
,
M.
, and
Metrikine
,
A. V.
,
2003
, “
Analytical Study of the Dynamic Response of an Embedded Railway Track to a Moving Load
,”
Arch. Appl. Mech.
,
73
(
1–2
), pp.
131
146
. 10.1007/s00419-002-0248-3
17.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M. F.
, and
Pinto Da Costa
,
A.
,
2017
, “
Critical Velocities of a Beam on Nonlinear Elastic Foundation Under Harmonic Moving Load
,”
Procedia Eng.
,
199
(X International Conference on Structural Dynamics, EURODYN 2017), pp.
2585
2590
. 10.1016/j.proeng.2017.09.348
18.
Jorge
,
P. C.
,
Da Costa
,
A. P.
, and
Simões
,
F. M. F.
,
2015
, “
Finite Element Dynamic Analysis of Finite Beams on a Bilinear Foundation Under a Moving Load
,”
J. Sound Vib.
,
346
(
1
), pp.
328
344
. 10.1016/j.jsv.2014.12.044
19.
Chang
,
T. P.
, and
Liu
,
Y. N.
,
1996
, “
Dynamic Finite Element Analysis of a Nonlinear Beam Subjected to a Moving Load
,”
Int. J. Solids Struct.
,
33
(
12
), pp.
1673
1688
. 10.1016/0020-7683(95)00128-X
20.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M. F.
, and
Pinto Da Costa
,
A.
,
2018
, “
Dynamics of a Beam on a Bilinear Elastic Foundation Under Harmonic Moving Load
,”
Acta Mechanica
,
229
(
10
), pp.
4141
4165
. 10.1007/s00707-018-2213-4
21.
Rodrigues
,
C.
,
Simões
,
F. M. F.
,
Pinto da Costa
,
A.
,
Froio
,
D.
, and
Rizzi
,
E.
,
2018
, “
Finite Element Dynamic Analysis of Beams on Nonlinear Elastic Foundations Under a Moving Oscillator
,”
Eur. J. Mech. A/Solids
,
68
(
Feb 2017
), pp.
9
24
. 10.1016/j.euromechsol.2017.10.005
22.
Rieker
,
J. R.
, and
Trethewey
,
M. W.
,
1999
, “
Finite Element Analysis of an Elastic Beam Structure Subjected to a Moving Distributed Mass Train
,”
Mech. Syst. Signal Process.
,
13
(
1
), pp.
31
51
. 10.1006/S0888-3270(99)80003-X
23.
Malekzadeh
,
P.
, and
Monajjemzadeh
,
S. M.
,
2016
, “
Dynamic Response of Functionally Graded Beams in a Thermal Environment Under a Moving Load
,”
Mech. Adv. Mater. Struc.
,
23
(
3
), pp.
248
258
. 10.1080/15376494.2014.949930
24.
Castro Jorge
,
P.
,
Simões
,
F. M. F.
, and
Pinto Da Costa
,
A.
,
2015
, “
Dynamics of Beams on Non-Uniform Nonlinear Foundations Subjected to Moving Loads
,”
Comput. Struct.
,
148
, pp.
26
34
. 10.1016/j.compstruc.2014.11.002
25.
Zhu
,
X. Q.
, and
Law
,
S. S.
,
2006
, “
Moving Load Identification on Multi-Span Continuous Bridges With Elastic Bearings
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1759
1782
. 10.1016/j.ymssp.2005.06.004
26.
Chan
,
T. H. T.
, and
Ashebo
,
D. B.
,
2006
, “
Theoretical Study of Moving Force Identification on Continuous Bridges
,”
J. Sound Vib.
,
295
(
3–5
), pp.
870
883
. 10.1016/j.jsv.2006.01.059
27.
He
,
W. Y.
, and
Zhu
,
S.
,
2016
, “
Moving Load-Induced Response of Damaged Beam and Its Application in Damage Localization
,”
J. Vib. Control
,
22
(
16
), pp.
3601
3617
. 10.1177/1077546314564587
28.
Zhai
,
W.
,
Xia
,
H.
,
Cai
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Guo
,
X.
,
Zhang
,
N.
, and
Wang
,
K.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part I: Theoretical Model and Numerical Simulation
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
3
24
. 10.1080/23248378.2013.791498
29.
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2013
, “
A Lagrange-Eulerian Formulation of an Axially Moving Beam Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
343
358
. 10.1007/s11044-013-9350-2
30.
Mei
,
G.
,
Yang
,
C.
,
Liang
,
S.
,
Wang
,
J.
,
Zou
,
D.
,
Zhang
,
W.
,
Zhao
,
Y.
,
Huang
,
Z.
,
Song
,
S.
,
Tan
,
M.
,
Cheng
,
Y.
, and
Miao
,
B.
,
2018
, “
A Reduced Time-Varying Model for a Long Beam on Elastic Foundation Under Moving Loads
,”
J. Mech. Sci. Technol.
,
32
(
9
), pp.
4017
4024
. 10.1007/s12206-018-0801-9
31.
Koh
,
C. G.
,
Chiew
,
G. H.
, and
Lim
,
C. C.
,
2007
, “
A Numerical Method for Moving Load on Continuum
,”
J. Sound Vib.
,
300
(
1–2
), pp.
126
138
. 10.1016/j.jsv.2006.07.038
32.
Baines
,
M. J.
,
Hubbard
,
M. E.
, and
Jimack
,
P. K.
,
2005
, “
A Moving Mesh Finite Element Algorithm for the Adaptive Solution of Time-Dependent Partial Differential Equations With Moving Boundaries
,”
Appl. Numer. Math.
,
54
(
3–4
), pp.
450
469
. 10.1016/j.apnum.2004.09.013
33.
Xu
,
W. T.
,
Lin
,
J. H.
,
Zhang
,
Y. H.
,
Kennedy
,
D.
, and
Williams
,
F. W.
,
2009
, “
2D Moving Element Method for Random Vibration Analysis of Vehicles on Kirchhoff Plate With Kelvin Foundation
,”
Lat. Am. J. Solids Struct.
,
6
(
Jan
), pp.
169
183
.
34.
Martínez-Casas
,
J.
,
Giner-Navarro
,
J.
,
Baeza
,
L.
, and
Denia
,
F. D.
,
2017
, “
Improved Railway Wheelset–Track Interaction Model in the High-Frequency Domain
,”
J. Comput. Appl. Math.
,
309
, pp.
642
653
. 10.1016/j.cam.2016.04.034
35.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
. 10.1016/0045-7825(82)90128-1
36.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
. 10.1016/0045-7825(81)90049-9
37.
Hong
,
D.
,
Tang
,
J.
, and
Ren
,
G.
,
2011
, “
Dynamic Modeling of Mass-Flowing Linear Medium With Large Amplitude Displacement and Rotation
,”
J. Fluids Struct.
,
27
(
8
), pp.
1137
1148
. 10.1016/j.jfluidstructs.2011.06.006
38.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
. 10.1007/s11044-010-9242-7
39.
Luo
,
Y.
,
2008
, “
An Efficient 3D Timoshenko Beam Element With Consistent Shape Functions
,”
Adv. Theor. Appl. Mech.
,
1
(
3
), pp.
95
106
.
40.
Zhang
,
W.
,
Shen
,
Z.
, and
Zeng
,
J.
,
2013
, “
Study on Dynamics of Coupled Systems in High-Speed Trains
,”
Veh. Syst. Dyn.
,
51
(
7
), pp.
966
1016
. 10.1080/00423114.2013.798421
41.
Zeng
,
Z.
,
Liu
,
F.
,
Lou
,
P.
,
Zhao
,
Y.
, and
Peng
,
L.
,
2016
, “
Formulation of Three-Dimensional Equations of Motion for Train—Slab Track—Bridge Interaction System and Its Application to Random Vibration Analysis
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
5891
5929
. 10.1016/j.apm.2016.01.020
42.
Mao
,
L.
, and
Lu
,
Y.
,
2013
, “
Critical Speed and Resonance Criteria of Railway Bridge Response to Moving Trains
,”
J. Bridge Eng.
,
18
(
2
), pp.
131
141
. 10.1061/(ASCE)BE.1943-5592.0000336
43.
Huang
,
H.
, and
Chrismer
,
S.
,
2013
, “
Discrete Element Modeling of Ballast Settlement Under Trains Moving at ‘Critical Speeds,’
,”
Constr. Build. Mater.
,
38
, pp.
994
1000
. 10.1016/j.conbuildmat.2012.09.007
44.
Dai
,
J.
, and
Ang
,
K. K.
,
2015
, “
Steady-State Response of a Curved Beam on a Viscously Damped Foundation Subjected to a Sequence of Moving Loads
,”
Proc. Inst. Mech. Eng., Part F
,
229
(
4
), pp.
375
394
. 10.1177/0954409714563366
You do not currently have access to this content.