Abstract

A hierarchical multiscale finite element model is employed to investigate the effect of dihedral energy term on the numerical simulation of two-dimensional materials. The numerical examples of the carbon nanotubes and graphene sheets are studied employing a refined constitutive model in conjunction with a multiscale finite element method. The constitutive law refined with the greater accuracy on the bending modulus using second generation reactive empirical bond order potential with dihedral energy term is employed to investigate the linear and nonlinear response of the carbon nanotubes incorporating material and Green–Lagrange geometric nonlinearities. The inclusion of the dihedral energy term predicts bending modulus close to those of through first principle calculations. The deformations at the nanoscale and macroscopic scales are related through the Cauchy–Born rule. The effect of the dihedral energy term on the response of the carbon nanotubes is studied in detail. The governing equation of motion for the carbon nanotubes is formulated through Hamilton’s energy principle. The spatial approximation of the carbon nanotubes at the continuum scale is attained through the finite element method. The membrane locking in the circumferential strain is eliminated through the membrane consistent interpolation functions obtained through the least-square method.

References

1.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
55
, pp.
495
533
.
2.
Wang
,
C. M.
,
Zhang
,
Y. Y.
,
Xiang
,
Y.
, and
Reddy
,
J. N.
,
2010
, “
Recent Studies on Buckling of Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030804
.
3.
Xu
,
X.
, and
Liao
,
K.
,
2001
, “
Molecular and Continuum Mechanics Modelling of Graphene Deformation
,”
Mater. Phys. Math.
,
4
, pp.
148
151
.
4.
Hemmasizadeh
,
A.
,
Mahzoon
,
M.
,
Hadi
,
E.
, and
Khandan
,
R.
,
2008
, “
A Method for Developing the Equivalent Continuum Model of a Single Layer Graphene Sheet
,”
Thin Solid Films
,
516
, pp.
7636
7640
.
5.
Duan
,
W. H.
, and
Wang
,
C. M.
,
2009
, “
Nonlinear Bending and Stretching of a Circular Graphene Sheet Under a Central Point Load
,”
Nanotechnology
,
20
, p.
075702
.
6.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
,
2005
, “
Continuum Model for the Vibration of Multilayered Graphene Sheets
,”
Phys. Rev. B
,
72
, p.
075443
.
7.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
,
2005
, “
Resonance Analysis of Multi-Layered Graphene Sheets Used as Nanoscale Resonators
,”
Nanotechnology
,
16
, pp.
2086
2091
.
8.
Behfar
,
K.
, and
Naghdabadi
,
R.
,
2005
, “
Nanoscale Vibrational Analysis of a Multi-Layered Graphene Sheet Embedded in an Elastic Medium
,”
Compos. Sci. Technol.
,
65
, pp.
1159
1164
.
9.
Lin
,
R. M.
,
2012
, “
Nanoscale Vibration Characterization of Multi-Layered Graphene Sheets Embedded in an Elastic Medium
,”
Comput. Mater. Sci.
,
53
, pp.
44
52
.
10.
Jiang
,
S.
,
Shi
,
S.
, and
Wang
,
X.
,
2014
, “
Nanomechanics and Vibration Analysis of Graphene Sheets Via a 2D Plate Model
,”
J. Phys. D: Appl. Phys.
,
47
, p.
045104
.
11.
Mianroodi
,
J. R.
,
Niaki
,
S. A.
,
Naghdabadi
,
R.
, and
Asghari
,
M.
,
2011
, “
Nonlinear Membrane Model for Large Amplitude Vibration of Single-Layer Graphene Sheets
,”
Nanotechnology
,
22
, p.
305703
.
12.
Wang
,
J.
,
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Zhang
,
H.
,
2011
, “
Geometrical Nonlinear Free Vibration of Multi-Layered Graphene Sheets
,”
J. Phys. D: Appl. Phys.
,
44
, p.
135401
.
13.
He
,
X. Q.
,
Wang
,
J. B.
,
Liu
,
B.
, and
Liew
,
K. M.
,
2012
, “
Analysis of Nonlinear Forced Vibration of Multi-Layered Graphene Sheets
,”
Comput. Mater. Sci.
,
61
, pp.
194
199
.
14.
Mahdavi
,
M. H.
,
Jiang
,
L. Y.
, and
Sun
,
X.
,
2012
, “
Nonlinear Vibration and Postbuckling Analysis of a Single Layer Graphene Sheet Embedded in a Polymer Matrix
,”
Phys. E: Low Dimens. Syst. Nanostruct.
,
44
, pp.
1708
1715
.
15.
Ru
,
C. Q.
,
2000
, “
Column Buckling of Multi-Walled Carbon Nanotubes With Interlayer Radial Displacements
,”
Phys. Rev. B
,
62
, pp.
16962
16967
.
16.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
,
2006
, “
Buckling of Multi-Walled Carbon Nanotubes Using Timoshenko Beam Theory
,”
J. Eng. Mech.
,
132
, pp.
952
958
.
17.
Wang
,
Q.
, and
Varadan
,
V. K.
,
2005
, “
Stability Analysis of Carbon Nanotube Probes for an Atomic Force Microscope Via a Continuum Model
,”
Smart Mater. Struct.
,
14
, pp.
1196
1203
.
18.
Natsuki
,
T.
,
Ni
,
Q. Q.
, and
Endo
,
M.
,
2011
, “
Stability Analysis of Double-Walled Carbon Nanotubes as AFM Probes Based on a Continuum Model
,”
Carbon
,
49
, pp.
2532
2537
.
19.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2003
, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Compos. Sci. Technol.
,
63
, pp.
1533
1542
.
20.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2005
, “
Terahertz Vibration of Short Carbon Nanotubes Modeled as Timoshenko Beams
,”
ASME J. Appl. Mech.
,
72
, pp.
10
17
.
21.
Zhang
,
Y.
,
Liu
,
G. R.
, and
Han
,
X.
,
2005
, “
Transverse Vibrations of Double-Walled Carbon Nanotubes Under Compressive Axial Load
,”
Phys. Lett. A
,
340
, pp.
258
266
.
22.
Natsuki
,
T.
,
Ni
,
Q. Q.
, and
Endo
,
M.
,
2008
, “
Analysis of the Vibration Characteristics of Double-Walled Carbon Nanotubes
,”
Carbon
,
46
, pp.
1570
1573
.
23.
Wang
,
C. M.
,
Tay
,
Z. Y.
,
Chowdhury
,
A. N. R.
,
Duan
,
W. H.
,
Zhang
,
Y. Y.
, and
Silvestre
,
N.
,
2011
, “
Examination of Cylindrical Shell Theories for Buckling of Carbon Nanotubes
,”
Int. J. Struct. Stab. Dyn.
,
11
, pp.
1035
1058
.
24.
Liew
,
K. M.
, and
Wang
,
Q.
,
2007
, “
Analysis of Wave Propagation in Carbon Nanotubes Via Elastic Shell Theories
,”
Int. J. Eng. Sci.
,
45
, pp.
227
241
.
25.
Chowdhury
,
R.
,
Wang
,
C. Y.
, and
Adhikari
,
S.
,
2010
, “
Low-Frequency Vibration of Multiwall Carbon Nanotubes With Heterogeneous Boundaries
,”
J. Phys. D: Appl. Phys.
,
43
, p.
085405
.
26.
Brischetto
,
S.
,
2014
, “
A Continuum Elastic Three-Dimensional Model for Natural Frequencies of Single-Walled Carbon Nanotubes
,”
Compos. Part B: Eng.
,
61
, pp.
222
228
.
27.
Strozzi
,
M.
,
Manevitch
,
L. I.
,
Pellicano
,
F.
,
Smirnov
,
V. V.
, and
Shepelev
,
D. S.
,
2014
, “
Low-Frequency Linear Vibrations of Single-Walled Carbon Nanotubes: Analytical and Numerical Models
,”
J. Sound Vib.
,
333
, pp.
2936
2957
.
28.
Ru
,
C. Q.
,
2000
, “
Effect of Van Der Waals Forces on Axial Buckling of a Double-Walled Carbon Nanotube
,”
J. Appl. Phys.
,
87
, pp.
7227
7231
.
29.
Ru
,
C. Q.
,
2001
, “
Axially Compressed Buckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
,
49
, pp.
1265
1279
.
30.
Han
,
Q.
, and
Lu
,
G.
,
2003
, “
Torsional Buckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium
,”
Eur. J. Mech. A Solid.
,
22
, pp.
875
883
.
31.
Yang
,
H. K.
, and
Wang
,
X.
,
2007
, “
Torsional Buckling of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium
,”
Compos. Struct.
,
77
, pp.
182
192
.
32.
Wang
,
X.
,
Lu
,
G.
, and
Lu
,
Y. J.
,
2007
, “
Buckling of Embedded Multi-Walled Carbon Nanotubes Under Combined Torsion and Axial Loading
,”
Int. J. Solids Struct.
,
44
, pp.
336
351
.
33.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
,
2005
, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for Van Der Waals Interaction
,”
J. Mech. Phys. Solids
,
53
, pp.
303
326
.
34.
Shen
,
H. S.
,
2004
, “
Postbuckling Prediction of Double-Walled Carbon Nanotubes Under Hydrostatic Pressure
,”
Int. J. Solids Struct.
,
41
, pp.
2643
2657
.
35.
Yao
,
X.
, and
Han
,
Q.
,
2007
, “
Postbuckling Prediction of Double-Walled Carbon Nanotubes Under Axial Compression
,”
Eur. J. Mech. A Solid.
,
26
, pp.
20
32
.
36.
Yao
,
X.
, and
Han
,
Q.
,
2008
, “
A Continuum Mechanics Nonlinear Postbuckling Analysis for Single-Walled Carbon Nanotubes Under Torque
,”
Eur. J. Mech. A Solid.
,
27
, pp.
796
807
.
37.
Yao
,
X.
, and
Han
,
Q.
,
2008
, “
Torsional Buckling and Postbuckling Equilibrium Path of Double-Walled Carbon Nanotubes
,”
Compos. Sci. Technol.
,
68
, pp.
113
120
.
38.
Singh
,
S.
, and
Patel
,
B. P.
,
2015
, “
Atomistic-Continuum Coupled Model for Nonlinear Analysis of Single-Layer Graphene Sheets
,”
Int. J. Nonlinear Mech.
,
76
, pp.
112
119
.
39.
Klintenberg
,
M.
,
Lebegue
,
S.
,
Ortiz
,
C.
,
Sanyal
,
B.
,
Fransson
,
J.
, and
Eriksson
,
O.
,
2009
, “
Evolving Properties of Two-Dimensional Materials: From Graphene to Graphite
,”
J. Phys.: Condens. Matter
,
21
, p.
335502
.
40.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
,
64
, p.
235406
.
41.
Liu
,
F.
,
Ming
,
P.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
, p.
064120
.
42.
Reich
,
S.
,
Thomsen
,
C.
, and
Ordejon
,
P.
,
2002
, “
Elastic Properties of Carbon Nanotubes Under Hydrostatic Pressure
,”
Phys. Rev. B
,
65
, p.
153407
.
43.
Sanchez-Portal
,
D.
,
Emilio
,
A.
,
Jose
,
M. S.
,
Angel
,
R.
, and
Pablo
,
O.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
12678
12688
.
44.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hemandez
,
E.
, and
Rubio
,
A.
,
1999
, “
Elastic and Mechanical Properties of Carbon Nanotubes
,”
Synth. Met.
,
103
, pp.
2500
2501
.
45.
Hernandez
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
,
1998
, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
,
80
, pp.
4502
4505
.
46.
Molina
,
J. M.
,
Savinsky
,
S. S.
, and
Khokhriakov
,
N. V.
,
1996
, “
A Tight-Binding Model for Calculations of Structures and Properties of Graphitic Nanotubes
,”
J. Chem. Phys.
,
104
, pp.
4652
4656
.
47.
Tadmor
,
E. B.
, and
Miller
,
R. E.
,
2011
,
Modelling Materials: Continuum, Atomistic and Multiscale Techniques
,
Cambridge University Press
,
Cambridge
.
48.
Gupta
,
S. S.
, and
Batra
,
R. C.
,
2008
, “
Continuum Structures Equivalent in Normal Mode Vibrations to Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
43
, pp.
715
723
.
49.
Gupta
,
S. S.
, and
Batra
,
R. C.
,
2010
, “
Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets
,”
J. Comput. Theor. Nanosci.
,
7
, pp.
1
14
.
50.
Reddy
,
C. D.
,
Rajendran
,
S.
, and
Liew
,
K. M.
,
2010
, “
Vibration Properties of Single-Walled Carbon Nanotubes: A Comparison Between the Atomistic Simulations and Continuum Shell Modelling
,”
J. Comput. Theor. Nanosci.
,
7
, pp.
1400
1406
.
51.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
,
2004
, “
On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation
,”
Acta Mater.
,
52
, pp.
2521
2527
.
52.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
,
2004
, “
Nanomechanics of Single and Multi-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
, p.
115429
.
53.
Liew
,
K. M.
,
Wang
,
J. B.
,
He
,
X. Q.
, and
Zhang
,
H. W.
,
2007
, “
Buckling Analysis of Abnormal Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
,
102
, p.
053511
.
54.
Zhang
,
C. L.
, and
Shen
,
H. S.
,
2006
, “
Buckling and Postbuckling Analysis of Single-Walled Carbon Nanotubes in Thermal Environments Via Molecular Dynamics Simulation
,”
Carbon
,
44
, pp.
2608
2616
.
55.
Zhang
,
C. L.
, and
Shen
,
H. S.
,
2007
, “
Buckling and Postbuckling of Single-Walled Carbon Nanotubes Under Combined Axial Compression and Torsion in Thermal Environments
,”
Phys. Rev. B
,
75
, p.
045408
.
56.
Lu
,
Q.
, and
Huang
,
R.
,
2009
, “
Nonlinear Mechanics of Single Atomic Layer Graphene Sheets
,”
Int. J. Appl. Mech.
,
1
, pp.
443
467
.
57.
Bunch
,
J. S.
,
Van Der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2007
, “
Electromechanical Resonators From Graphene Sheets
,”
Science
,
315
, pp.
490
493
.
58.
Annamalai
,
M.
,
Mathew
,
S.
,
Jamali
,
M.
,
Zhan
,
D.
, and
Palaniapan
,
M.
,
2012
, “
Elastic and Nonlinear Response of Nanomechanical Graphene Devices
,”
J. Micromech. Microeng.
,
22
, p.
105024
.
59.
Garcia-Sanchez
,
D.
,
van der Zande
,
A. M.
,
Paulo
,
A. S.
,
Lassagne
,
B.
,
McEuen
,
P. L.
, and
Bachtold
,
A.
,
2008
, “
Imaging Mechanical Vibrations in Suspended Graphene Sheets
,”
Nano Lett.
,
8
, pp.
1399
1403
.
60.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Element Methods for the Non-Linear Mechanics of Crystalline Sheets and Nanotubes
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
419
456
.
61.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
A Computationally Efficient Multiscale Finite Element Formulation for Dynamic and Postbuckling Analyses of Carbon Nanotubes
,”
Comput. Struct.
,
195
, pp.
126
144
.
62.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
39
, pp.
3893
3906
.
63.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2003
, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
,
28
, pp.
429
442
.
64.
Guo
,
X.
,
Wang
,
J. B.
, and
Zhang
,
H. W.
,
2006
, “
Mechanical Properties of Single-Walled Carbon Nanotubes Based on Higher Order Cauchy–Born Rule
,”
Int. J. Solids Struct.
,
43
, pp.
1276
1290
.
65.
Wang
,
J. B.
,
Guo
,
X.
,
Zhang
,
H. W.
,
Wang
,
L.
, and
Liao
,
J. B.
,
2006
, “
Energy and Mechanical Properties of Single-Walled Carbon Nanotubes Predicted Using the Higher Order Cauchy–Born Rule
,”
Phys. Rev. B
,
73
, p.
115428
.
66.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy–Born Rule
,”
Phys. Rev. B
,
69
, p.
115415
.
67.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
, p.
245413
.
68.
Yan
,
J. W.
,
Liew
,
K. M.
, and
He
,
L. H.
,
2013
, “
Free Vibration Analysis of Single-Walled Carbon Nanotubes Using a Higher Order Gradient Theory
,”
J. Sound Vib.
,
332
, pp.
3740
3755
.
69.
Sun
,
Y.
, and
Liew
,
K. M.
,
2008
,
Meshfree Simulation of Single-Walled Carbon Nanotubes Using Higher Order Cauchy–Born Rule
,”
Comput. Mater. Sci.
,
42
, pp.
444
452
.
70.
Sun
,
Y.
, and
Liew
,
K. M.
,
2008
, “
The Buckling of Single-Walled Carbon Nanotubes Upon Bending: The Higher Order Gradient Continuum and Meshfree Method
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
3001
3013
.
71.
Yan
,
J. W.
,
Liew
,
K. M.
, and
He
,
L. H.
,
2012
, “
Analysis of Single-Walled Carbon Nanotubes Using the Moving Kriging Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
229
, pp.
56
67
.
72.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2002
, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
,
50
, pp.
1941
1977
.
73.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Large Deformation Static and Dynamic Response of Carbon Nanotubes by Mixed Atomistic and Continuum Models
,”
Int. J. Mech. Sci.
,
135
, pp.
565
581
.
74.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Mathematical Treatise to Model Dihedral Energy in the Multiscale Modelling of Two-Dimensional Nanomaterials
,”
ASME J. Appl. Mech.
,
85
, p.
061003
.
75.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
, pp.
783
802
.
76.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.