For the lack of higher-order modes, lumped element (LE) models currently used may be insufficient to predict the system of balanced-armature receiver (BAR). We develop an LE multimode model for BAR in the frequency domain based on the techniques of mode decomposition, truncation, and selection. The validation is made by comparing with both the corresponding combined finite element (FE)–LE model and the full FE model. Numerical results prove that the developed model is not only as effective as the combined FE–LE model but also much more efficient. Additionally, an in-depth investigation performed discloses the inherent deficiency of the traditional LE model.

References

1.
Hunt
,
F. V.
,
1954
,
Electroacoustics: The Analysis of Transduction, and Its Historical Background
,
Acoustical Society of America
,
New York
, pp.
213
235
.
2.
Madsen
,
H. S.
,
1971
, “
Small Balanced Armature Receiver for Electronic Telephone Sets
,”
J. Audio Eng. Soc.
,
19
(
3
), pp.
209
212
.
3.
Kampinga
,
W. R.
,
2010
, “
Viscothermal Acoustics Using Finite Elements: Analysis Tools for Engineers
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
4.
Jensen
,
J.
,
Agerkvist
,
F. T.
, and
Harte
,
J. M.
,
2011
, “
Nonlinear Time-Domain Modeling of Balanced-Armature Receivers
,”
J. Audio Eng. Soc.
,
59
(
3
), pp.
91
101
.
5.
Kim
,
N.
, and
Allen
,
J. B.
,
2013
, “
Two-Port Network Analysis and Modeling of a Balanced Armature Receiver
,”
Hear. Res.
,
301
(
1
), pp.
156
167
.
6.
Tsai
,
Y. T.
, and
Huang
,
J. H.
,
2013
, “
A Study of Nonlinear Harmonic Distortion in a Balanced Armature Actuator With Asymmetrical Magnetic Flux
,”
Sens. Actuators, A
,
203
(
6
), pp.
324
334
.
7.
Jensen
,
J.
,
2014
, “
Nonlinear Distortion Mechanisms and Efficiency of Miniature Balanced-Armature Loudspeakers
,” Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark.
8.
Bai
,
M. R.
,
Liu
,
C. Y.
, and
Chen
,
R. L.
,
2008
, “
Optimization of Microspeaker Diaphragm Pattern Using Combined Finite Element-Lumped Parameter Models
,”
IEEE Trans. Magn.
,
44
(
8
), pp.
2049
2057
.
9.
Nguyen
,
C. H.
, and
Pietrzko
,
S. J.
,
2007
, “
Vibroacoustic FE Analysis of an Adaptive Plate With PZT Actuator/Sensor Pairs Connected to a Multiple-Mode, Electric Shunt System
,”
Finite Elem. Anal. Des.
,
43
(
15
), pp.
1120
1134
.
10.
Sun
,
W.
, and
Hu
,
W. X.
,
2014
, “
Integrated Finite-Element and Lumped-Element Modeling of Balanced-Armature Receiver
,”
21st International Congress on Sound and Vibration
, Beijing, China, July 13–17, pp.
2119
2126
.
11.
Tilmans
,
H. A. C.
,
1998
, “
Equivalent Circuit Representation of Electromechanical Transducers: II. Distributed-Parameter Systems
,”
J. Micromech. Microeng.
,
7
(
4
), pp.
285
309
.
12.
Klippel
,
W.
, and
Schlechter
,
J.
,
2009
, “
Distributed Mechanical Parameters of Loudspeakers. Part 1: Measurements
,”
J. Audio Eng. Soc.
,
57
(
7
), pp.
500
511
.
13.
He
,
J. M.
, and
Fu
,
Z. F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
London
, pp.
94
129
.
14.
Moore
,
R. E.
, and
Cloud
,
M. J.
,
2007
,
Computational Functional Analysis
, 2nd ed.,
Woodhead Publishing
,
Philadelphia, PA
, pp.
24
27
.
15.
Xie
,
N. G.
, and
Song
,
P. Y.
,
2002
, “
An Annotation of Modal Superposition Method of Linear Oscillation System
,”
Hydro-Sci. Eng.
,
22
(
1
), pp.
52
55
(in Chinese).
16.
Hatch
,
M. R.
,
2001
,
Vibration Simulation Using MATLAB and ANSYS
,
Chapman & Hall/CRC
, Boca Raton, FL, pp.
412
414
.
17.
Hefferon
,
J.
,
2011
,
Linear Algebra
,
Virginia Commonwealth University
,
Richmond, VA
, pp.
249
252
.
18.
Yu
,
R. F.
,
Zhou
,
X. Y.
, and
Yuan
,
M. Q.
,
2012
, “
Dynamic Response Analysis of Generally Damped Linear System With Repeated Eigenvalues
,”
Struct. Eng. Mech.
,
42
(
4
), pp.
449
469
.
19.
Beranek
,
L. L.
, and
Mellow
,
T. J.
,
2012
,
Acoustics: Sound Fields and Transducers
,
Elsevier-Academic Press
,
Waltham, MA
, p.
14
.
You do not currently have access to this content.