This paper uses finite element method to simulate the passive vibration control which is able to improve the overall performance and the operational bandwidth. The vibration control is based on dynamic structural tailoring achieved via acoustic black holes (ABH) with the local thickness varying according to power-law profile. The ABH is a passive technique which uses properties of wave propagation in structures with gradual decrease of thickness that leads to the decrease of phase and group velocities of flexural waves, which makes the ABH has the ability to reduce the structural vibrations after the wave pass through the ABH. However, because real manufacturing cannot develop ABH with zero residual thickness, this nonzero residual thickness will induce the corresponding reflection coefficients are far from zero. In this paper, two types of damping mechanism are attached to the surface of plate: (1) damping layers and (2) coupled electro–mechanical system in order to reduce the structure vibrations. The effects of different number of ABHs, different thickness of damping layers, and different configurations of electrical circuitry are also explored. In this study, the performances of ABH-based passive and semipassive vibration control are explored using numerical simulations of a two-dimensional plate with embedded ABHs. Results show that the ABH based design can enhance the performance of vibration control under steady-state response.

References

1.
Gourdon
,
E.
,
Sauzeat
,
C.
,
Di Benedetto
,
H.
, and
Bilodeau
,
K.
,
2015
, “
Seven-Parameter Linear Viscoelastic Model Applied to Acoustical Damping Materials
,”
ASME J. Vib. Acoust.
,
137
(
6
), p. 061003.
2.
Mahmoodi
,
S.
, and
Ahmadian
,
M.
,
2010
, “
Modified Acceleration Feedback for Active Vibration Control of Aerospace Structures
,”
Smart Mater. Struct.
,
19
(
6
), p.
065015
.
3.
Prasad
,
M.
,
1985
. “
Acoustics, Noise and Vibration Control Education Through Senior Year Mechanical Engineering Design Projects
,”
Mech. Eng. News
,
22
(
3
), pp.
24
29
.
4.
Tang
,
X.
, and
Zuo
,
L.
,
2012
, “
Simultaneous Energy Harvesting and Vibration Control of Structures With Tuned Mass Dampers
,”
J. Intell. Mater. Syst. Struct.
,
23
(
18
), pp.
2117
2127
.
5.
Kareem
,
A.
,
Kijewski
,
T.
, and
Tamura
,
Y.
,
1999
, “
Mitigation of Motions of Tall Buildings With Specific Examples of Recent Applications
,”
Wind Struct. Int. J.
,
2
(
3
), pp.
201
251
.
6.
Zhu
,
W.
,
Tryggvason
,
B.
, and
Piedboeuf
,
J. C.
,
2006
, “
On Active Acceleration Control of Vibration Isolation Systems
,”
Control Eng. Pract.
,
14
(
8
), pp.
863
873
.
7.
Gardonio
,
P.
,
2002
, “
Review of Active Techniques for Aerospace Vibro-Acoustic Control
,”
J. Aircr.
,
39
(
2
), pp.
206
214
.
8.
Lee
,
C. K.
,
Chiang
,
W. W.
, and
O'Sullivan
,
T. C.
,
1991
, “
Piezoelectric Modal Sensor/Actuator Pairs for Critical Active Damping Vibration Control
,”
J. Acoust. Soc. Am.
,
90
(
1
), pp.
374
384
.
9.
Park
,
C. H.
, and
Baz
,
A.
,
1999
, “
Vibration Control of Bending Modes of Plates Using Active Constrained Layer Damping
,”
J. Sound Vib.
,
227
(
4
), pp.
711
734
.
10.
Rudinger
,
F.
,
2007
, “
Tuned Mass Damper With Nonlinear Viscous Damping
,”
J. Sound Vib.
,
300
(
3–5
), pp.
932
948
.
11.
Setareh
,
M.
,
Ritchey
,
J. K.
,
Baxter
,
A. J.
, and
Murray
,
T. M.
,
2006
, “
Pendulum Tuned Mass Dampers for Floor Vibration Control
,”
J. Perform. Constr. Facil.
,
20
(
1
), pp.
64
73
.
12.
Fitzgerald
,
B.
, and
Basu
,
B.
,
2013
, “
Active Tuned Mass Damper Control of Wind Turbine Nacelle/Tower Vibrations With Damaged Foundations
,”
Key Eng. Mater.
,
569–570
, pp.
660
667
.
13.
Karnopp
,
D. C.
,
1973
,
Active and Passive Isolation of Random Vibration
, Vol.
1
,
ASTM
,
Cincinnati, OH
.
14.
Fuller
,
C. R.
,
Elliott
,
S. J.
, and
Nelson
,
P. A.
,
1997
,
Active Control of Vibration
,
Academic Press
,
Cambridge, MA
.
15.
Jolly
,
M.
, and
Margolis
,
D.
,
1997
, “
Regenerative Systems for Vibration Control
,”
ASME J. Vib. Acoust.
,
119
(
2
), pp.
208
215
.
16.
Georgiev
,
V.
,
Cuenca
,
J.
,
Gautier
,
F.
,
Simon
,
L.
, and
Krylov
,
V.
,
2011
, “
Damping of Structural Vibrations in Beams and Elliptical Plates Using the Acoustic Black Hole Effect
,”
J. Sound Vib.
,
330
(
11
), pp.
2497
2508
.
17.
Mironov
,
M. A.
,
1988
, “
Propagation of a Flexural Wave in a Plate Whose Thickness Decreases Smoothly to Zero in a Finite Interval
,”
Sov. Phys. Acoust.
,
34
(
3
), pp.
318
319
.
18.
Krylov
,
V. V.
,
2004
, “
New Type of Vibration Dampers Utilising the Effect of Acoustic ‘Black Holes'
,”
Acta Acust. Acust.
,
90
(
5
), pp.
830
837
.
19.
Zhao
,
L.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2014
, “
Broadband Energy Harvesting Using Acoustic Black Hole Structural Tailoring
,”
Smart Mater. Struct.
,
23
(
6
), p.
065021
.
20.
Zhao
,
L.
,
Semperlotti
,
F.
, and
Conlon
,
S. C.
,
2014
, “
Enhanced Vibration Based Energy Harvesting Using Embedded Acoustic Black Holes
,”
Proc. SPIE
9061
, p.
90610L
.
21.
ANSYS, 2012, “
Ansys 14.5 Help, Electromagnetic Analysis Guide
,”
ANSYS Inc.
,
Canonsburg, PA
.
22.
Deu
,
J. F.
,
Larbi
,
W. O. R.
, and
Sampaio
,
R.
,
2014
, “
Piezoelectric Shunt Vibration Damping of Structural-Acoustic Systems: Finite Element Formulation and Reduced-Order Model
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031007
.
23.
Rivin
,
E.
,
1999
,
Stiffness and Damping in Mechanical Design
,
Taylor and Francis
,
Hoboken, NJ
.
24.
Hollkamp
,
J. J.
,
1996
, “
An Experimental Comparison of Piezoelectric and Constrained Layer Damping
,”
Smart Mater. Struct.
,
5
(
5
), pp.
715
722
.
You do not currently have access to this content.