This paper uses finite element method to simulate the passive vibration control which is able to improve the overall performance and the operational bandwidth. The vibration control is based on dynamic structural tailoring achieved via acoustic black holes (ABH) with the local thickness varying according to power-law profile. The ABH is a passive technique which uses properties of wave propagation in structures with gradual decrease of thickness that leads to the decrease of phase and group velocities of flexural waves, which makes the ABH has the ability to reduce the structural vibrations after the wave pass through the ABH. However, because real manufacturing cannot develop ABH with zero residual thickness, this nonzero residual thickness will induce the corresponding reflection coefficients are far from zero. In this paper, two types of damping mechanism are attached to the surface of plate: (1) damping layers and (2) coupled electro–mechanical system in order to reduce the structure vibrations. The effects of different number of ABHs, different thickness of damping layers, and different configurations of electrical circuitry are also explored. In this study, the performances of ABH-based passive and semipassive vibration control are explored using numerical simulations of a two-dimensional plate with embedded ABHs. Results show that the ABH based design can enhance the performance of vibration control under steady-state response.
Skip Nav Destination
Article navigation
August 2016
Research-Article
Passive Vibration Control Based on Embedded Acoustic Black Holes
Liuxian Zhao
Liuxian Zhao
Department of Aerospace and
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556
e-mail: lzhao2@nd.edu
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556
e-mail: lzhao2@nd.edu
Search for other works by this author on:
Liuxian Zhao
Department of Aerospace and
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556
e-mail: lzhao2@nd.edu
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556
e-mail: lzhao2@nd.edu
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received July 23, 2014; final manuscript received March 17, 2016; published online May 4, 2016. Assoc. Editor: Nader Jalili.
J. Vib. Acoust. Aug 2016, 138(4): 041002 (6 pages)
Published Online: May 4, 2016
Article history
Received:
July 23, 2014
Revised:
March 17, 2016
Citation
Zhao, L. (May 4, 2016). "Passive Vibration Control Based on Embedded Acoustic Black Holes." ASME. J. Vib. Acoust. August 2016; 138(4): 041002. https://doi.org/10.1115/1.4033263
Download citation file:
Get Email Alerts
Numerical Analysis of the Tread Grooves’ Acoustic Resonances for the Investigation of Tire Noise
J. Vib. Acoust (August 2024)
Related Articles
Analytical Solution of Biot's Equations Based on Potential Functions Method
J. Vib. Acoust (October,2015)
Active Control of a Very Large Floating Beam Structure
J. Vib. Acoust (April,2016)
Active Vibration Control Using Centrifugal Forces Created by Eccentrically Rotating Masses
J. Vib. Acoust (August,2016)
Control of Vibration Using Compliant Actuators
J. Vib. Acoust (October,2017)
Related Proceedings Papers
Related Chapters
Fundamentals of Structural Dynamics
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Supporting Systems/Foundations
Handbook on Stiffness & Damping in Mechanical Design
Advances in Materials and Measurement Methods for Interior Building Noise Control
Advances in Gypsum Technologies and Building Systems