Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.

References

1.
Ungar
,
E. E.
, and
Zapfe
,
J. A.
,
2006
, “
Vibration Isolation
,”
Noise and Vibration Control Engineering
, 2nd ed.,
I. L.
Ver
and
L. L.
Beranek
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 13.
2.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
3.
Rivin
,
E. I.
,
2001
,
Passive Vibration Isolation
,
ASME Press
,
New York
.
4.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
, Jr.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.10.1016/j.ijmecsci.2011.11.012
5.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere Publishing Company
,
New York
.
6.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
7.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.10.1016/j.jsv.2007.12.019
8.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.10.1016/j.jsv.2008.11.034
9.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.10.1016/j.jsv.2011.07.039
10.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2014
, “
Active Pneumatic Vibration Isolation System Using Negative Stiffness Structures for a Vehicle Seat
,”
J. Sound Vib.
,
333
(
5
), pp.
1245
1268
.10.1016/j.jsv.2013.10.027
11.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static-Low-Dynamic-Stiffness Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.10.1016/j.jsv.2009.11.001
12.
Shaw
,
A. D.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2013
, “
Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts
,”
J. Sound Vib.
,
332
(
6
), pp.
1437
1455
.10.1016/j.jsv.2012.10.036
13.
Xu
,
D. L.
,
Yu
,
Q. P.
,
Zhou
,
J. X.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
.10.1016/j.jsv.2013.01.034
14.
Tech Products
,
2015
, “
Bubble Mounts
,” Tech Products Corp., Miamisburg, OH, accessed Feb. 3, 2015, http://www.novibes.com/Products#/filters=/detail=Bubble_Mounts
15.
Abolfathi
,
A.
,
2012
, “
Nonlinear Vibration Isolators With Asymmetric Stiffness
,” Ph.D. thesis, University of Southampton, Southampton, UK.
16.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Lineton
,
B.
,
2008
, “
On the Resonance Response of an Asymmetric Duffing Oscillator
,”
Int. J. Non-Linear Mech.
,
43
(
9
), pp.
858
867
.10.1016/j.ijnonlinmec.2008.05.008
17.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Effect of the System Imperfections on the Dynamic Response of a High-Static-Low-Dynamic Stiffness Vibration Isolator
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1157
1167
.10.1007/s11071-013-1199-7
18.
Huang
,
X.
,
Liu
,
X.
, and
Hua
,
H.
,
2014
, “
Effects of Stiffness and Load Imperfection on the Isolation Performance of a High-Static-Low-Dynamic Stiffness Nonlinear Isolator Under Base Displacement Excitation
,”
Int. J. Non-Linear Mech.
,
65
, pp.
32
43
.10.1016/j.ijnonlinmec.2014.04.011
19.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Lineton
,
B.
,
2009
, “
Effect of a Static Force on the Dynamic Behaviour of a Harmonically Excited Quasi-Zero Stiffness System
,”
J. Sound Vib.
,
325
(
4–5
), pp.
870
883
.10.1016/j.jsv.2009.03.036
20.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.