One approach to vibration control is to apply a force to a primary structure that opposes the excitation, effectively canceling the external disturbance. A familiar passive example of this approach is the linear-tuned mass absorber. In this spirit, the utility of a bistable attachment for attenuating vibrations, especially in terms of the high-orbit, snap-through dynamic, is investigated using the harmonic balance method and experiments. Analyses demonstrate the fundamental harmonic snap-through dynamic, having commensurate frequency with the single-frequency harmonic excitation, may generate adverse constructive forces that substantially reinforce the applied excitation, primarily at lower frequencies. However, both analyses and experiments indicate that such high-orbit dynamics may be largely destabilized by increased bistable attachment damping. Destructive forces, which substantially oppose the excitation, are unique in that they lead to a form of vibration attenuation analogous to strictly adding damping to the host structure, leaving its spectral characteristics largely unaltered. The experiments verify the analytical findings and also uncover nonlinear dynamics not predicted by the analysis, which render similar attenuation effects.

References

1.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.10.1115/1.2836462
2.
Tsai
,
M.
, and
Wang
,
K. W.
,
1999
, “
On the Structural Damping Characteristics of Active Piezoelectric Actuators With Passive Shunt
,”
J. Sound Vib.
,
221
(
1
), pp.
1
22
.10.1006/jsvi.1998.1841
3.
Morgan
,
R. A.
, and
Wang
,
K. W.
,
2002
, “
Active–Passive Piezoelectric Absorbers for Systems Under Multiple Non-Stationary Harmonic Excitations
,”
J. Sound Vib.
,
255
(
4
), pp.
685
700
.10.1006/jsvi.2001.4184
4.
Wang
,
K. W.
and
Tang
,
J.
,
2008
, Adaptive Structural Systems With Piezoelectric Transducer Circuitry, Springer, New York.
5.
Shaw
,
J.
,
Shaw
,
S. W.
, and
Haddow
,
A. G.
,
1989
, “
On the Response of the Non-Linear Vibration Absorber
,”
Int, J, Non-Linear Mech.
,
24
(
4
), pp.
281
293
.10.1016/0020-7462(89)90046-2
6.
Alexander
,
N. A.
, and
Schilder
,
F.
,
2009
, “
Exploring the Performance of a Nonlinear Tuned Mass Damper
,”
J. Sound Vib.
,
319
(
1-2
), pp.
445
462
.10.1016/j.jsv.2008.05.018
7.
Nayfeh
,
T. A.
,
Emaci
,
E.
, and
Vakakis
,
A. F.
,
1997
, “
Application of Nonlinear Localization to the Optimization of a Vibration Isolation System
,”
AIAA J.
,
35
(
8
), pp.
1378
1386
.10.2514/2.247
8.
Jiang
,
X.
, and
Vakakis
,
A. F.
,
2003
, “
Dual Mode Vibration Isolation Based on Non-Linear Mode Localization
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
837
850
.10.1016/S0020-7462(01)00137-8
9.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
,
New York
.
10.
Johnson
,
D. R.
,
Thota
,
M.
,
Semperlotti
,
F.
, and
Wang
,
K. W.
,
2013
, “
On Achieving High and Adaptable Damping Via a Bistable Oscillator
,”
Smart Mater. Struct.
,
22
(
11
), p.
115027
.10.1088/0964-1726/22/11/115027
11.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2004
, “
Snap-Through Truss as a Vibration Absorber
,”
J. Vibr. Control
,
10
(
2
), pp.
291
308
.10.1177/1077546304035604
12.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2006
, “
Snap-Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
(
3-5
), pp.
705
722
.10.1016/j.jsv.2005.04.022
13.
Avramov
,
K. V.
, and
Gendelman
,
O. V.
,
2009
, “
Interaction of Elastic System With Snap-Through Vibration Absorber
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
81
89
.10.1016/j.ijnonlinmec.2008.09.004
14.
Gendelman
,
O. V.
, and
Lamarque
,
C. H.
,
2005
, “
Dynamics of Linear Oscillator Coupled to Strongly Nonlinear Attachment With Multiple States of Equilibrium
,”
Chaos, Solit. Fract.
,
24
(
2
), pp.
501
509
.10.1016/j.chaos.2004.09.088
15.
den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover
,
New York
.
16.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(5), p.
053903
.10.1063/1.4790381
17.
Tseng
,
W.-Y.
, and
Dugundji
,
J.
,
1971
, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
467
476
.10.1115/1.3408799
18.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
19.
Szemplińska-Stupnicka
,
W.
, and
Bajkowski
,
J.
,
1980
, “
Multi-Harmonic Response in the Regions of Instability of Harmonic Solution in Multi-Degree-of-Freedom Non-Linear Systems
,”
Int. J. Non-Linear Mech.
,
15
(1), pp.
1
11
.10.1016/0020-7462(80)90048-7
20.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(6), p. 061005.10.1115/1.4026555
You do not currently have access to this content.