Active sandwich panels are an example of smart noise attenuators and a realization of hybrid active-passive approach for the problem of broadband noise reduction. The panels are composed of thin elastic faceplates linked by the core of a lightweight absorbent material of high porosity. Moreover, they are active, so piezoelectric actuators in the form of thin patches are fixed to their faceplates. Therefore, the passive absorbent properties of porous core, effective at high and medium frequencies, can be combined with the active vibroacoustic reduction necessary in a low frequency range. Important convergence issues for fully coupled finite-element modeling of such panels are investigated on a model of a disk-shaped panel under a uniform acoustic load by plane harmonic waves, with respect to the important parameter of the total reduction of acoustic transmission. Various physical phenomena are considered, namely, the wave propagation in a porous medium, the vibrations of elastic plate and the piezoelectric behavior of actuators, the acoustics-structure interaction and the wave propagation in a fluid. The modeling of porous core requires the usage of the advanced biphasic model of poroelasticity, because the vibrations of the skeleton of porous core cannot be neglected; they are in fact induced by the vibrations of the faceplates. Finally, optimal voltage amplitudes for the electric signals used in active reduction, with respect to the relative size of the piezoelectric actuator, are computed in some lower-to-medium frequency range.

References

1.
Fuller
,
C. R.
,
Elliott
,
S. J.
, and
Nelson
,
P. A.
,
Active Control of Vibration
(
Academic
,
New York
, 1996).
2.
Petitjean
,
B.
,
Legrain
,
I.
,
Simon
,
F.
, and
Pauzin
,
S.
, 2002, “
Active Control Experiments for Acoustic Radiation Reduction of a Sandwich Panel: Feedback and Feedforward Investigations
,”
J. Sound Vib.
,
252
(
1
), pp.
19
36
.
3.
Lee
,
J.-K.
,
Kim
,
J.
,
Rhee
,
C.-J.
,
Jo
,
C.-H.
, and
Choi
,
S.-B.
, 2002, “
Noise Reduction of Passive and Active Hybrid Panels
,”
Smart Mater. Struct.
,
11
, pp.
940
946
.
4.
Araújo
,
A. L.
,
Soares
,
C. M. M.
, and
Soares
,
C. A. M.
, 2010, “
A Viscoelastic Sandwich Finite Element Model for the Analysis of Passive, Active and Hybrid Structures
,”
Appl. Compos. Mater.
,
17
, pp.
529
542
.
5.
Xin
,
F.
, and
Lu
,
T.
, 2010, “
Sound radiation of Orthogonally Rib-Stiffened Sandwich Structures with Cavity Absorption
,”
Compos. Sci. Technol.
,
70
, pp.
2198
2206
.
6.
Allard
,
J. F.
, 1993,
Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials
,
Elsevier
,
New York.
7.
Allard
,
J. F.
, and
Atalla
,
N.
, 2009,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed.,
Wiley
,
New York.
8.
Dauchez
,
N.
,
Sahraoui
,
S.
, and
Atalla
,
N.
, 2003, “
Investigation and Modelling of Damping in a Plate with a Bonded Porous Layer
,”
J. Sound Vib.
,
265
, pp.
437
449
.
9.
Biot
,
M. A.
, 1956, “
The Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
191
.
10.
Rigobert
,
S.
,
Sgard
,
F. C.
, and
Atalla
,
N.
, 2004, “
A Two-Field Hybrid Formulation for Multilayers Involving Poroelastic, Acoustic, and Elastic Materials
,”
J. Acoust. Soc. Am.
,
115
(
6
), pp.
2786
2797
.
11.
Zielinski
,
T. G.
,
Galland
,
M.-A.
, and
Ichchou
,
M. N.
, 2005, “
Active Reduction of Vibroacoustic Transmission Using Elasto-Poroelastic Sandwich Panels and Piezoelectric Materials
,” in
Proceedings of SAPEM’2005: Symposium on the Acoustics of Poro-Elastic Materials
,
Lyon, France
.
12.
Zielinski
,
T. G.
,
Galland
,
M.-A.
, and
Ichchou
,
M. N.
, 2006, “
Further Modeling and New Results of Active Noise Reduction Using Elasto-Poroelastic Panels
,” in
Proceedings of ISMA2006: International Conference on Sound and Vibration
,
Leuven, Belgium
, Vol.
1–8
, pp.
309
319
.
13.
Batifol
,
C.
,
Zielinski
,
T. G.
,
Galland
,
M.-A.
, and
Ichchou
,
M. N.
, 2006, “
Hybrid Piezo-Poroelastic Sound Package Concept: Numerical/Experimental Validations
,” in
Conference Proceedings of ACTIVE 2006
.
14.
Batifol
,
C.
,
Ichchou
,
M.
, and
Galland
,
M.-A.
, 2007, “
Component Mode Synthesis Finite Element Model of a Smart Double-Plate Panel
,” in
Conference Proceedings of 19th International Congress on Acoustics ICA2007
.
15.
Batifol
,
C.
,
Zielinski
,
T. G.
,
Ichchou
,
M. N.
, and
Galland
,
M.-A.
, 2007, “
A Finite-Element Study of a Piezoelectric/Poroelastic Sound Package Concept
,”
Smart Mater. Struct.
,
16
, pp.
168
177
.
16.
Zieliński
,
T. G.
, 2011, “
Numerical Investigation of Active Porous Composites with Enhanced Acoustic Absorption
,”
J. Sound Vib.
,
330
(
22
), pp.
5292
5308
.
17.
Benjeddou
,
A.
, 2000, “
Advances in Piezoelectric Finite Element Modeling of Adaptive Structural Elements: A Survey
,”
Comput. Struct.
,
76
, pp.
347
363
.
18.
Deü
,
J.-F.
,
Larbi
,
W.
, and
Ohayon
,
R.
, 2008, “
Piezoelectric Structural Acoustic Problems. Symmetric Variational Formulations and Finite Element Results
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
1715
1724
.
19.
Larbi
,
W.
,
Deü
,
J.-F.
,
Ciminello
,
M.
, and
Ohayon
,
R.
, 2010, “
Structural-Acoustic Vibration Reduction Using Switched Shunt Piezoelectric Patches: A Finite Element Analysis
,”
J. Vib. Acoust.
,
132
, pp.
051006
-1–
9
.
20.
Atalla
,
N.
,
Panneton
,
R.
, and
Debergue
,
P.
, 1998, “
A Mixed Displacement-Pressure Formulation for Poroelastic Materials
,”
J. Acoust. Soc. Am.
,
104
(
3
), pp.
1444
1452
.
21.
Debergue
,
P.
,
Panneton
,
R.
, and
Atalla
,
N.
, 1999, “
Boundary Conditions for the Weak Formulation of the Mixed (u,p) Poroelasticity Problem
,”
J. Acoust. Soc. Am.
,
106
(
5
), November, pp.
2383
2390
.
22.
Atalla
,
N.
,
Hamdi
,
M. A.
, and
Panneton
,
R.
, 2001, “
Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations
,”
J. Acoust. Soc. Am.
,
109
(
6
), pp.
3065
3068
.
23.
Dazel
,
O.
,
Brouard
,
B.
,
Depollier
,
C.
, and
Griffiths
,
S.
, 2007, “
An Alternative Biot’s Displacement Formulation for Porous Materials
,”
J. Acoust. Soc. Am.
,
121
(
6
), pp.
3509
3516
.
24.
Dazel
,
O.
,
Brouard
,
B.
,
Dauchez
,
N.
, and
Geslain
,
A.
, 2009, “
Enhanced Biot’s Finite Element Displacement Formulation for Porous Materials and Original Resolution Methods Based on Normal Modes
,”
Acta Acust. united with Acust.
,
95
, pp.
527
538
.
25.
Zieliński
,
T. G.
, 2010, “
Fundamentals of Multiphysics Modelling of Piezo-Poro-Elastic Structures
,’’
Arch. Mech.
,
62
(
5
), pp.
343
378
.
26.
Zieliński
,
T. G.
, 2011, “
Finite-Element Modelling of Fully-Coupled Active Systems Involving Poroelasticity, Piezoelectricity, Elasticity, and Acoustics
,” in
Proceedings of the 19th International Conference on Computer Methods in Mechanics CMM2011
,
Warsaw, Poland
.
27.
Zielinski
,
T. G.
, 2010, “
Multiphysics Modeling and Experimental Validation of the Active Reduction of Structure-Borne Noise
,”
J. Vib. Acoust.
,
132
(
6
), pp.
061008
-1–
14
.
28.
Aoki
,
Y.
,
Gardonio
,
P.
,
Gavagni
,
M.
,
Galassi
,
C.
, and
Elliott
,
S. J.
, 2010, “
Parametric Study of a Piezoceramic Patch Actuator for Proportional Velocity Feedback Control Loop
,”
J. Vib. Acoust.
,
132
, pp.
061007
-1–
10
.
29.
Blackstock
,
D. T.
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
, 2000).
You do not currently have access to this content.