In this paper, a study is presented in which piezoelectric microbenders were fabricated and tested to demonstrate energy generating performance. Trapezoidal and diagonal (with respect to the substrate crystal directions) unimorph PZT cantilever benders with interdigitated electrode patterns were utilized. The interdigitated design is beneficial for microenergy harvesting devices because it utilizes the d33 mode, which can generate higher voltage than the d31 mode design. It can also eliminate the bottom electrode by only using an interdigitated top electrode, which facilitates fabrication, as opposed to the d31 mode design that requires both top and bottom electrodes. The micro-electromechanical system (MEMS) benders fabricated in this study consist of layers of SiO2/SiNx/ZrO2/PZT and Au/Cr interdigitated electrode on the top. The experimental results indicate that the fundamental frequencies of the microbenders are about 9.1 kHz for the trapezoidal bender and 18.48 kHz for the diagonal bender. The microtrapezoidal bender can generate power of approximately 1.4μW into a 680kΩ resistive load at the resonant frequency. The diagonal bender can generate power of about 18.2μW into a 100kΩ resistive load at the resonant frequency.

1.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
A Distributes Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
041002
.
2.
Shahruz
,
S. M.
, 2008, “
Performance of Mechanical Bandpass Filters Used in Energy Scavenging in the Presence of Fabrication Errors and Coupling
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
054505
.
3.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, 2009, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
011010
.
4.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
, 2009, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
0022-460X,
320
, pp.
386
405
.
5.
Jeon
,
Y. B.
,
Sood
,
R.
,
Jeong
,
J. -H.
, and
Kim
,
S. -G.
, 2005, “
MEMS Power Generator With Transverse Mode Thin Film PZT
,”
Sens. Actuators, A
0924-4247,
122
, pp.
16
22
.
6.
Choi
,
W. J.
,
Jeon
,
Y.
,
Sood
,
R.
, and
Kim
,
S. G.
, 2006, “
Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers
,”
J. Electroceram.
1385-3449,
17
, pp.
543
548
.
7.
Hong
,
Y. K.
,
Moon
,
K. S.
, and
Levy
,
M.
, 2006, “
Single-Crystal Film Piezoelectric Sensors, Actuators, and Energy Harvesters With Interdigitated Electrodes
,”
Ferroelectrics
0015-0193,
342
, pp.
1
13
.
8.
Shen
,
D.
,
Park
,
J. H.
,
Vjitsaria
,
J.
,
Choe
,
S. Y.
,
Wikle
,
H. C.
, and
Kim
,
D. J.
, 2008, “
The Design, Fabrication and Evaluation of a MEMS PZT Cantilever With an Integrated Si Proof Mass for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
055017
.
9.
Lee
,
B. S.
,
Lin
,
S. C.
,
Wu
,
W. J.
,
Wang
,
X. Y.
,
Chang
,
P. Z.
, and
Lee
,
C. K.
, 2009, “
Piezoelectric MEMS Generators Fabricated With an Aerosol Deposition PZT Thin Film
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
065014
.
10.
Reilly
,
E. K.
, and
Wright
,
P. K.
, 2009, “
Modeling, Fabrication and Stress Compensation of an Epitaxial Thin Film Piezoelectric Microscale Energy Scavenging Device
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
095014
.
11.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S. -G.
, 2005, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
1058-4587,
71
, pp.
121
160
.
12.
Dutoit
,
N. E.
, and
Wardle
,
B. L.
, 2006, “
Performance of Microfabricated Piezoelectric Vibration Energy Harvesters
,”
Integr. Ferroelectr.
1058-4587,
83
, pp.
13
32
.
13.
Xu
,
B.
,
Ye
,
Y.
,
Cross
,
L. E.
,
Bernstein
,
J. J.
, and
Miller
,
R.
, 1999, “
Dielectric Hysteresis From Transverse Electric Fields in lead Zirconate Titanate Thin Films
,”
Appl. Phys. Lett.
0003-6951,
74
(
23
), pp.
3549
3551
.
14.
Zhao
,
H.
,
Ren
,
T.
, and
Zhang
,
N.
, 2003, “
High-Frequency Properties of PZT for RF-Communication Applications
,”
Mater. Sci. Eng., B
0921-5107,
99
(
1–3
), pp.
192
194
.
15.
Cheng
,
J.
, and
Meng
,
Z.
, 2001, “
Thickness-Dependent Microstructures and Electric Properties of PZT Films Derived From Sol-Gel Process
,”
Thin Solid Films
0040-6090,
385
, pp.
5
10
.
16.
Chen
,
B.
,
Huang
,
C.
, and
Wu
,
L.
, 2003, “
Crack Alleviation Processing of Lead Zirconate Titanate Thin Films Deposited by Sol-Gel Method
,”
Thin Solid Films
0040-6090,
441
, pp.
13
18
.
17.
Zhu
,
M.
, and
Kirby
,
P. B.
, 2006, “
Design Study of Piezoelectric Micro-Machined Mechanically Coupled Cantilever Filters Using a Combined Finite Element and Microwave Circuit Analysis
,”
Sens. Actuators, A
0924-4247,
126
, pp.
417
424
.
18.
Wang
,
Z.
,
Kokawa
,
H.
, and
Takizawa
,
H.
, 2007, “
Low-Temperature Processing of Lead Zirconate Titanate Thin Films by 28 GHz Microwave Irradiation for MEMS Application
,”
Proc. SPIE
0277-786X,
6413
, p.
641308
.
19.
Frederick
,
A. A.
, 2006, “
Analysis and Fabrication of MEMS Tunable Piezoelectric Resonators
,” MS thesis, University of Pittsburgh, Pittsburgh, PA.
20.
Knight
,
R.
, 2007, “
The Analysis and Testing of MEMS and Macro Scale Piezoelectric Devices
,” MS thesis, University of Pittsburgh, Pittsburgh, PA.
21.
Knight
,
R.
,
Mo
,
C.
, and
Clark
,
W. W.
, 2008, “
Development and Testing of a MEMS Piezoelectric Energy Harvester
,”
Proc. SPIE
0277-786X,
7288
, p.
72880A
.
22.
Mo
,
C.
,
Kim
,
S.
, and
Clark
,
W. W.
, 2005, “
Analysis of Power Generating Performance for Unimorph Cantilever Piezoelectric Beams With the Interdigitated Electrode
,”
Proceedings of ASME IDETC
, Long Beach, CA.
23.
Mo
,
C.
,
Kim
,
S.
, and
Clark
,
W. W.
, 2009, “
Theoretical Analysis of Energy Harvesting Performance for Unimorph Piezoelectric Benders With Interdigitated Electrodes
,”
Smart Mater. Struct.
0964-1726,
18
, p.
055017
.
24.
Clark
,
W. W.
, and
Ramsay
,
M. J.
, 2000, “
Smart Material Transducers as Power Sources for MEMS Devices
,”
International Symposium on Smart Structures and Microsystems
, Hong Kong, Oct. 19–21.
You do not currently have access to this content.