An analytical approximation is developed for solving large amplitude nonlinear free vibration of simply supported laminated cross-ply composite thin plates. Applying Kirchhoff’s hypothesis and the nonlinear von Kármán plate theory, a one-dimensional nonlinear second-order ordinary differential equation with quadratic and cubic nonlinearities is formulated with the aid of an energy function. By imposing Newton’s method and harmonic balancing to the linearized governing equation, we establish the higher-order analytical approximations for solving the nonlinear differential equation with odd nonlinearity. Based on the nonlinear differential equation with odd and even nonlinearities, two new nonlinear differential equations with odd nonlinearity are introduced for constructing the analytical approximations to the nonlinear differential equation with general nonlinearity. The analytical approximations are mathematically formulated by combining piecewise approximate solutions from such two new nonlinear systems. The third-order analytical approximation with better accuracy is proposed here and compared with other numerical and approximate methods with respect to the exact solutions. In addition, the method presented herein is applicable to small as well as large amplitude vibrations of laminated plates. Several examples including large amplitude nonlinear free vibration of simply supported laminated cross-ply rectangular thin plates are illustrated and compared with other published results to demonstrate the applicability and effectiveness of the approach.

1.
Chandra
,
R.
, and
Raju
,
B. B.
, 1975, “
Large Amplitude Flexural Vibration of Cross Ply Laminated Composite Plates
,”
Fibre Sci. Technol.
0015-0568,
8
, pp.
243
263
.
2.
Chandra
,
R.
, 1976, “
Large Deflection Vibration of Cross-Ply Laminated Plates With Certain Edge Conditions
,”
J. Sound Vib.
0022-460X,
47
, pp.
509
514
.
3.
Chia
,
C. Y.
, 1980,
Nonlinear Analysis of Plates
,
McGraw-Hill
,
New York
.
4.
Chia
,
C. Y.
, 1982, “
Large Amplitude Vibrations of Laminated Rectangular Plates
,”
Fibre Sci. Technol.
0015-0568,
17
, pp.
123
131
.
5.
Sathyamoorthy
,
M.
, 1987, “
Nonlinear Vibrations Analysis of Plates
,”
Appl. Mech. Rev.
0003-6900,
40
, pp.
1553
1561
.
6.
Bhimaraddi
,
A.
, 1989, “
Non-Linear Free Vibration Analysis of Composite Plates With Initial Imperfections and In-Plane Loading
,”
Int. J. Solids Struct.
0020-7683,
25
, pp.
33
43
.
7.
Singh
,
G.
,
Kanaka Raju
,
K.
,
Venkateshwara Rao
,
G.
, and
Iyengar
,
N. G. R.
, 1990, “
Non-Linear Vibrations of Simply Supported Rectangular Cross-Ply Plates
,”
J. Sound Vib.
0022-460X,
142
, pp.
213
226
.
8.
Singh
,
G.
,
Venkateshwara Rao
,
G.
, and
Iyengar
,
N. G. R.
, 1991, “
Large Amplitude Free Vibration of Simply Supported Antisymmetric Cross-Ply Plates
,”
AIAA J.
0001-1452,
29
, pp.
784
790
.
9.
Pillai
,
S. R. R.
, and
Nageswara Rao
,
B.
, 1991, “
Large-Amplitude Vibration of Thin Plates
,”
J. Sound Vib.
0022-460X,
149
, pp.
509
512
.
10.
Pillai
,
S. R. R.
, and
Nageswara Rao
,
B.
, 1991, “
Improved Solution for the Non-Linear Vibration of Simply Supported Rectangular Cross-Ply Plates
,”
J. Sound Vib.
0022-460X,
150
, pp.
517
519
.
11.
Nageswara Rao
,
B.
, and
Pillai
,
S. R. R.
, 1992, “
Exact Solution of the Equation of Motion to Obtain Non-Linear Vibration Characteristics of Thin Plates
,”
J. Sound Vib.
0022-460X,
153
, pp.
168
170
.
12.
Nageswara Rao
,
B.
, and
Pillai
,
S. R. R.
, 1992, “
Large-Amplitude Free Vibrations of Laminated Anisotropic Thin Plates Based on Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
154
, pp.
173
177
.
13.
Nageswara Rao
,
B.
, 1992, “
Application of Hybrid Galerkin Method to Non-Linear Free Vibrations of Laminated Thin Plates
,”
J. Sound Vib.
0022-460X,
154
, pp.
573
576
.
14.
Sarma
,
M. S.
,
Venkateshwar Rao
,
A.
,
Pillai
,
S. R. R.
, and
Nageswara Rao
,
B.
, 1992, “
Large Amplitude Vibrations of Laminated Hybrid Composite Plates
,”
J. Sound Vib.
0022-460X,
159
, pp.
540
545
.
15.
Nageswara Rao
,
B.
, 1992, “
Nonlinear Free Vibration Characteristics of Laminated Anisotropic Thin Plates
,”
AIAA J.
0001-1452,
30
, pp.
2991
2993
.
16.
Venkateshwar Rao
,
A.
, and
Nageswara Rao
,
B.
, 1994, “
Some Remarks on the Harmonic Balance Method for Mixed-Parity Non-Linear Oscillations
,”
J. Sound Vib.
0022-460X,
170
, pp.
571
576
.
17.
Sarma
,
M. S.
,
Beena
,
A. P.
, and
Nageswara Rao
,
B.
, 1995, “
Applicability of the Perturbation Technique to the Periodic Solution of ẍ+αx+βx2+γx3=0
,”
J. Sound Vib.
0022-460X,
180
, pp.
177
184
.
18.
Sarma
,
M. S.
, and
Nageswara Rao
,
B.
, 1995, “
Applicability of the Energy Method to Non-Linear Vibrations of Thin Rectangular Plates
,”
J. Sound Vib.
0022-460X,
187
, pp.
346
357
.
19.
Mickens
,
R. E.
, 1996,
Oscillations in Planar Dynamic Systems
,
Word Scientific
,
Singapore
.
20.
Onkar
,
A. K.
, and
Yadav
,
D.
, 2005, “
Forced Nonlinear Vibration of Laminated Composite Plates With Random Material Properties
,”
Compos. Struct.
0263-8223,
70
, pp.
334
342
.
21.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
22.
Mickens
,
R. E.
, 1993, “
Construction of a Perturbation Solution to a Mixed Parity System That Satisfies the Correct Initial Conditions
,”
J. Sound Vib.
0022-460X,
167
, pp.
564
567
.
23.
Gottlieb
,
H. P. W.
, 1992, “
On the Harmonic Balance Method for Mixed-Parity Non-Linear Oscillators
,”
J. Sound Vib.
0022-460X,
152
, pp.
189
191
.
24.
Hu
,
H.
, 2007, “
Solution of a Mixed Parity Nonlinear Oscillator: Harmonic Balance
,”
J. Sound Vib.
0022-460X,
299
, pp.
331
338
.
25.
Mickens
,
R. E.
, 1994, “
Construction of a Finite-Difference Scheme That Exactly Conserves Energy for a Mixed Parity Oscillator
,”
J. Sound Vib.
0022-460X,
172
, pp.
142
144
.
26.
Mickens
,
R. E.
, 2005, “
A Numerical Integration Technique for Conservative Oscillators Combining Nonstandard Finite-Difference Methods With a Hamilton’s Principle
,”
J. Sound Vib.
0022-460X,
285
, pp.
477
482
.
27.
Wu
,
B. S.
, and
Lim
,
C. W.
, 2004, “
Large Amplitude Non-Linear Oscillations of a General Conservative System
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
859
870
.
28.
Wu
,
B.
, and
Li
,
P.
, 2001, “
A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators
,”
Meccanica
0025-6455,
36
, pp.
167
176
.
29.
Wu
,
B.
, and
Li
,
P.
, 2001, “
A New Approach to Nonlinear Oscillations
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
951
952
.
30.
Lim
,
C. W.
, and
Wu
,
B. S.
, 2003, “
A New Analytical Approach to the Duffing-Harmonic Oscillator
,”
Phys. Lett. A
0375-9601,
311
, pp.
365
373
.
31.
Wu
,
B. S.
,
Sun
,
W. P.
, and
Lim
,
C. W.
, 2006, “
An Analytical Approximate Technique for a Class of Strongly Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
766
774
.
32.
Sun
,
W. P.
, and
Wu
,
B. S.
, 2008, “
Accurate Analytical Approximate Solutions to General Strong Nonlinear Oscillators
,”
Nonlinear Dyn.
0924-090X,
51
, pp.
277
287
.
33.
Wu
,
B. S.
,
Sun
,
W. P.
, and
Lim
,
C. W.
, 2007, “
Accurate Approximations to the Double-Well Duffing Oscillator in Large Amplitude Oscillations
,”
J. Sound Vib.
0022-460X,
307
, pp.
953
960
.
34.
Wu
,
B. S.
,
Lim
,
C. W.
, and
Sun
,
W. P.
, 2006, “
Improved Harmonic Balance Approach to Periodic Solutions of Non-Linear Jerk Equations
,”
Phys. Lett. A
0375-9601,
354
, pp.
95
100
.
35.
Wu
,
B.
,
Yu
,
Y.
, and
Li
,
Z.
, 2007, “
Analytical Approximations to Large Post-Buckling Deformation of Elastic Rings Under Uniform Hydrostatic Pressure
,”
Int. J. Mech. Sci.
0020-7403,
49
, pp.
661
668
.
36.
Lim
,
C. W.
,
Lai
,
S. K.
,
Wu
,
B. S.
, and
Sun
,
W. P.
, 2007, “
Accurate Approximation to the Double Sine-Gordon Equation
,”
Int. J. Eng. Sci.
0020-7225,
45
, pp.
258
271
.
37.
Jansen
,
E. L.
, 2008, “
Effect of Boundary Conditions on Nonlinear Vibration and Flutter of Laminated Cylindrical Shells
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, pp.
011003(1)
011003(8)
.
You do not currently have access to this content.