Large scale, three dimensional computer simulations of a dense aggregative bed were performed to provide insight into the physics behind bubble formation in vertically vibrated granular materials in a shaker. As the shaker acceleration exceeds a critical value, turbulent fluctuations proportional to the particle size were produced to promote fractures at the interface between the gas and particles suspended in the gas near the bottom of the shaker. As the wave fronts pass, the solid fractures took the form of sharply defined regions of very low solids fraction (air cavities) that rose through the bed with a speed that depends on their size. The nucleation of bubbles is found to be of the heterogeneous type.
Issue Section:
Technical Briefs
Keywords:
bubbles,
cavitation,
granular materials,
nonlinear acoustics,
underwater sound,
vibrations
1.
Heldman
, D. R.
, 2003, Encyclopedia of Agricultural, Food, and Biological Engineering
, Marcel Dekker
, New York
.2.
Parikh
, D. M.
, 2005, Handbook of Pharmaceutical Granulation Technology
, Taylor and Francis
, New York
.3.
Moavenzadeh
, F.
, 1990, Concise Encyclopedia of Building and Construction Materials
, MIT
, Cambridge, MA
.4.
Masuda
, H.
, Higashitani
, K.
, and Yoshida
, H.
, 2006, Powder Technology Handbook
, Taylor and Francis
, New York
.5.
Speight
, J. G.
, 1994, The Chemistry and Technology of Coal
, CRC
, New York
.6.
Wu
, X.-I.
, Maloy
, K. J.
, Hansen
, A.
, Ammi
, M.
, and Bideau
, D.
, 1993, “Why Hour Glasses Tick
,” Phys. Rev. Lett.
0031-9007, 71
, pp. 1363
–1369
.7.
Bagnold
, R. A.
, 1941, The Physics of Blown Sand and Desert Dunes
, Chapman and Hall
, London
.8.
Zamankhan
, P.
, and Huang
, J.
, 2007, “Complex Flow Dynamics in Dense Granular Flows. Part II: Simulation
,” ASME J. Appl. Mech.
0021-8936, 74
, pp. 691
–702
.9.
10.
Aoki
, K. M.
, Akiyama
, T.
, Maki
, Y.
, and Watanabe
, T.
, 1996, “Convective Roll Patterns in Vertically Vibrated Beds of Granules
,” Phys. Rev. E
1063-651X, 54
, pp. 874
–883
.11.
Wasgren
, C. R.
, Brennen
, C. E.
, and Hunt
, M. L.
, 1996, “Vertical Vibration of a Deep Bed of Granular Material in a Container
,” ASME J. Appl. Mech.
0021-8936, 63
, pp. 712
–719
.12.
Melo
, F.
, Umbanhouar
, P.
, and Swinney
, H. L.
, 1994, “Transition to Parametric Wave Patterns in a Vertically Oscillated Granular Layer
,” Phys. Rev. Lett.
0031-9007, 72
, pp. 172
–175
.13.
Bizon
, C.
, Shattuck
, M. D.
, Swift
, J. B.
, McCormick
, W. D.
, and Swinney
, H. L.
, 1998, “Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment
,” Phys. Rev. Lett.
0031-9007, 80
, pp. 57
–60
.14.
Pak
, H. P.
, and Behringer
, P. R.
, 1994, “Bubbling in Vertically Vibrating Granular Materials
,” Nature (London)
0028-0836, 371
, pp. 231
–233
.15.
Zamankhan
, P.
, and Huang
, J.
, 2007, “Localized Structures in Vertically Vibrated Granular Materials
,” ASME J. Fluids Eng.
0098-2202, 129
, pp. 236
–244
.16.
Zamankhan
, P.
, and Bordbar
, M. H.
, 2006, “Complex Flow Dynamics in Dense Granular Flows. Part I: Experimentation
,” ASME J. Appl. Mech.
0021-8936, 73
, pp. 648
–657
.17.
Zamankhan
, P.
, 2008, “Shock Waves in Dense Flows Down a Chute
,” Shock Waves
0938-1287, 17
, pp. 337
–349
.18.
Fang
, X.
, and Tang
, J.
, 2006, “Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses
,” ASME J. Vibr. Acoust.
0739-3717, 128
(4
), pp. 489
–500
.19.
Reynolds
, W. C.
, 1976, “Computation of Turbulent Flows
,” Annu. Rev. Fluid Mech.
0066-4189, 8
, pp. 183
–208
.20.
Allen
, M. P.
, and Tildesely
, D. J.
, 1987, Computer Simulation of Liquids
, Clarendon Press
, Oxford
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.