Large scale, three dimensional computer simulations of a dense aggregative bed were performed to provide insight into the physics behind bubble formation in vertically vibrated granular materials in a shaker. As the shaker acceleration exceeds a critical value, turbulent fluctuations proportional to the particle size were produced to promote fractures at the interface between the gas and particles suspended in the gas near the bottom of the shaker. As the wave fronts pass, the solid fractures took the form of sharply defined regions of very low solids fraction (air cavities) that rose through the bed with a speed that depends on their size. The nucleation of bubbles is found to be of the heterogeneous type.

1.
Heldman
,
D. R.
, 2003,
Encyclopedia of Agricultural, Food, and Biological Engineering
,
Marcel Dekker
,
New York
.
2.
Parikh
,
D. M.
, 2005,
Handbook of Pharmaceutical Granulation Technology
,
Taylor and Francis
,
New York
.
3.
Moavenzadeh
,
F.
, 1990,
Concise Encyclopedia of Building and Construction Materials
,
MIT
,
Cambridge, MA
.
4.
Masuda
,
H.
,
Higashitani
,
K.
, and
Yoshida
,
H.
, 2006,
Powder Technology Handbook
,
Taylor and Francis
,
New York
.
5.
Speight
,
J. G.
, 1994,
The Chemistry and Technology of Coal
,
CRC
,
New York
.
6.
Wu
,
X.-I.
,
Maloy
,
K. J.
,
Hansen
,
A.
,
Ammi
,
M.
, and
Bideau
,
D.
, 1993, “
Why Hour Glasses Tick
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
1363
1369
.
7.
Bagnold
,
R. A.
, 1941,
The Physics of Blown Sand and Desert Dunes
,
Chapman and Hall
,
London
.
8.
Zamankhan
,
P.
, and
Huang
,
J.
, 2007, “
Complex Flow Dynamics in Dense Granular Flows. Part II: Simulation
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
691
702
.
9.
Rajchenbach
,
J.
, 2000, “
Granular Flows
,”
Adv. Phys.
0001-8732,
49
, pp.
229
256
.
10.
Aoki
,
K. M.
,
Akiyama
,
T.
,
Maki
,
Y.
, and
Watanabe
,
T.
, 1996, “
Convective Roll Patterns in Vertically Vibrated Beds of Granules
,”
Phys. Rev. E
1063-651X,
54
, pp.
874
883
.
11.
Wasgren
,
C. R.
,
Brennen
,
C. E.
, and
Hunt
,
M. L.
, 1996, “
Vertical Vibration of a Deep Bed of Granular Material in a Container
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
712
719
.
12.
Melo
,
F.
,
Umbanhouar
,
P.
, and
Swinney
,
H. L.
, 1994, “
Transition to Parametric Wave Patterns in a Vertically Oscillated Granular Layer
,”
Phys. Rev. Lett.
0031-9007,
72
, pp.
172
175
.
13.
Bizon
,
C.
,
Shattuck
,
M. D.
,
Swift
,
J. B.
,
McCormick
,
W. D.
, and
Swinney
,
H. L.
, 1998, “
Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
57
60
.
14.
Pak
,
H. P.
, and
Behringer
,
P. R.
, 1994, “
Bubbling in Vertically Vibrating Granular Materials
,”
Nature (London)
0028-0836,
371
, pp.
231
233
.
15.
Zamankhan
,
P.
, and
Huang
,
J.
, 2007, “
Localized Structures in Vertically Vibrated Granular Materials
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
236
244
.
16.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
, 2006, “
Complex Flow Dynamics in Dense Granular Flows. Part I: Experimentation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
648
657
.
17.
Zamankhan
,
P.
, 2008, “
Shock Waves in Dense Flows Down a Chute
,”
Shock Waves
0938-1287,
17
, pp.
337
349
.
18.
Fang
,
X.
, and
Tang
,
J.
, 2006, “
Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
489
500
.
19.
Reynolds
,
W. C.
, 1976, “
Computation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
8
, pp.
183
208
.
20.
Allen
,
M. P.
, and
Tildesely
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford
.
You do not currently have access to this content.