Abstract

This work analytically derives design rules to suppress certain harmonics of planet mode response in planetary gear dynamics through mesh phasing. Planet modes are one of three categories of planetary gear vibration modes. In these modes, only the plantes deflect while the carrier, ring, and sun gears have no motion (Lin, J., and Parker, R. G., 1999, ASME J. Vib. Acoust., 121, pp. 316–321;J. Sound Vib, 233(5), pp. 921–928). The dynamic mesh forces are not explicitly modeled for this study; instead, the symmetry of planetary gear systems and gear tooth mesh periodicity are sufficient to establish rules to suppress planet modes. Thus, the conclusions are independent of the mesh modeling details. Planetary gear systems with equally spaced planets and with diametrically opposed planet pairs are examined. Suppression of degenerate mode response in purely rotational degree-of-freedom models achieved in the limit of infinite bearing stiffness is also investigated. The mesh phasing conclusions are verified by dynamic simulations of various planetary gears using a lumped-parameter analytical model and by comparisons to others’ research.

1.
Lin
,
J.
, and
Parker
,
R. G.
, 1999, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
316
321
.
2.
Lin
,
J.
, and
Parker
,
R. G.
, 2000, “
Structured Vibration Characteristics of Planetary Gears with Unequally Spaced Planets
,”
J. Sound Vib.
0022-460X,
233
(
5
), pp.
921
928
.
3.
Schlegel
,
R. G.
, and
Mard
,
K. C.
, 1967, “
Transmission Noise Control—Approaches in Helicopter Design
,”
ASME Design Engineering Conference
,
ASME
,
New York
, Paper No. 67–DE-58.
4.
Seager
,
D. L.
, 1975, “
Conditions for Neutralization of Excitation by the Teeth in Epicyclic Gearing
,”
J. Mech. Eng. Sci.
0022-2542,
17
, pp.
293
298
.
5.
Palmer
,
W. E.
, and
Fuehrer
,
R. R.
, 1977, “
Noise Control in Planetary Transmissions
,”
Earth Moving Industry Conference
, SAE, Peoria, Paper No. 770561.
6.
Hidaka
,
T.
,
Terauchi
,
Y.
, and
Nagamura
,
K.
, 1979, “
Dynamic Behavior of Planetary Gear—6th Report, Influence of Meshing-Phase
,”
Bull. JSME
0021-3764,
22
, pp.
1026
1033
.
7.
Platt
,
R. L.
, and
Leopold
,
R. D.
, 1996, “
A Study on Helical Gear Planetary Phasing Effects on Transmission Noise
,”
VDI-Ber.
0083-5560,
1230
, pp.
793
807
.
8.
Kahraman
,
A.
, 1994, “
Planetary Gear Train Dynamics
,”
J. Mech. Des.
1050-0472,
116
, pp.
713
720
.
9.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1994, “
Planet Mesh Phasing in Epicyclic Gear Sets
,”
Proceedings of International Gearing Conference
, Newcastle, UK, pp.
99
104
.
10.
Parker
,
R. G.
, and
Lin
,
J.
, 2004, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
J. Mech. Des.
1050-0472,
126
, pp.
365
370
.
11.
Parker
,
R. G.
, 2000, “
A Physical Explanation of the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
0022-460X,
236
(
4
), pp.
561
573
.
12.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
, 2004, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,” Journal of Sound and Vibration (in press).
13.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1997, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
217
226
.
14.
Wu
,
X.
, and
Parker
,
R. G.
, 2006, “
Modal Structure of Planetary Gears With an Elastic Continuum Ring Gear
” (in preparation).
15.
Kahraman
,
A.
, 1994, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
0022-460X,
171
(
1
), pp.
125
130
.
16.
Lin
,
J.
, and
Parker
,
R. G.
, 2002, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
0022-460X,
249
(
1
), pp.
129
145
.
17.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
, 2000, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modeling and Experimental Comparisons
,”
J. Sound Vib.
0022-460X,
237
(
3
), pp.
435
455
.
18.
Parker
,
R. G.
,
Agashe
,
V.
, and
Vijayakar
,
S. M.
, 2000, “
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
,”
J. Mech. Des.
1050-0472,
122
(
3
), pp.
304
310
.
19.
Yuksel
,
C.
, and
Kahraman
,
A.
, 2004, “
Dynamic Tooth Loads of Planetary Gears Sets Having Tooth Profile Wear
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
695
715
.
You do not currently have access to this content.