This paper is concerned with the dynamic stiffness formulation and its application for a Bernoulli-Euler beam carrying a two degree-of-freedom spring-mass system. The effect of a two degree-of-freedom system kinematically connected to the beam is represented exactly by replacing it with equivalent stiffness coefficients, which are added to the appropriate stiffness coefficients of the bare beam. Numerical examples whose results are obtained by applying the Wittrick-Williams algorithm to the total dynamic stiffness matrix are given and compared with published results. Applications of the theory include the free vibration analysis of frameworks carrying two degree-of-freedom spring-mass systems.

Issue Section:

Technical Papers
1.

Chen

, Y.

, 1963

, “On the Vibration of Beams or Rods Carrying a Concentrated Mass

,” ASME J. Appl. Mech.

, 30

, pp. 310

–311

.2.

Pan

, H. H.

, 1965

, “Transverse Vibration of an Euler Beam Carrying a System of Heavy Bodies

,” ASME J. Appl. Mech.

, 32

, pp. 434

–437

.3.

Laura

, P. A. A.

, Pombo

, J. L.

, and Susemihl

, E. A.

, 1974

, “A Note on the Vibration of a Clamped-Free Beam with a Mass at the Free End

,” J. Sound Vib.

, 37

, pp. 161

–168

.4.

Parnell

, L. A.

, and Cobble

, M. H.

, 1976

, “Lateral Displacements of a Vibrating Cantilever Beam with a Concentrated Mass

,” J. Sound Vib.

, 44

, pp. 499

–511

.5.

Gurgoze

, M.

, 1984

, “A Note on the Vibrations of Restrained Beams and Rods with Point Masses

,” J. Sound Vib.

, 96

, pp. 461

–468

.6.

Burch

, J. C.

, and Mitchell

, T. P.

, 1987

, “Vibration of a Mass-Loaded Clamped-Free Timoshenko beam

,” J. Sound Vib.

, 114

, pp. 341

–345

.7.

Laura

, P. A. A.

, Filipich

, C. P.

, and Cortinez

, V. H.

, 1987

, “Vibrations of Beams and Plates Carrying Concentrated Masses

,” J. Sound Vib.

, 117

, pp. 459

–465

.8.

Wu

, J. S.

, and Lin

, T. L.

, 1990

, “Free Vibration Analysis of a Uniform Cantilever Beam with Point Masses by an Analytical-and-Numerical-Combined Method

,” J. Sound Vib.

, 136

, pp. 201

–213

.9.

Abramovich

, H.

, and Hamburger

, O.

, 1991

, “Vibration of a Cantilever Timoshenko Beam with a Tip Mass

,” J. Sound Vib.

, 148

, pp. 162

–170

.10.

Massalas

, C.

, and Soldatos

, K.

, 1978

, “Free Vibration of a Beam Subjected to Elastic Constraints

,” J. Sound Vib.

, 57

, pp. 607

–608

.11.

Davies

, H. G.

, and Rogers

, R. J.

, 1979

, “The Vibration of Structures Elastically Constrained at Discrete Points

,” J. Sound Vib.

, 63

, pp. 437

–447

.12.

Lau

, J. H.

, 1981

, “Fundamental Frequency of a Constrained Beam

,” J. Sound Vib.

, 78

, pp. 154

–157

.13.

Verniere

, P.

, Ficcadenti

, G.

, and Laura

, P. A. A.

, 1984

, “Dynamic Analysis of a Beam with an Intermediate Elastic Support

,” J. Sound Vib.

, 96

, pp. 381

–389

.14.

Lau

, J. H.

, 1984

, “Vibration Frequencies and Mode Shapes for a Constrained Cantilever

,” ASME J. Appl. Mech.

, 51

, pp. 182

–187

.15.

Maurizi

, M. J.

, and Bambill de Rossit

, D. V.

, 1987

, “Free Vibration of a Clamped-Clamped Beam with an Intermediate Elastic Support

,” J. Sound Vib.

, 119

, pp. 173

–176

.16.

Rao

, C. K.

, 1989

, “Frequency Analysis of Clamped-Clamped Uniform Beams with Intermediate Elastic Support

,” J. Sound Vib.

, 133

, pp. 502

–509

.17.

Jacquot

, R. G.

, and Gibson

, J. D.

, 1972

, “The Effects of Discrete Masses and Elastic Supports on Continuous Beam Natural Frequencies

,” J. Sound Vib.

, 23

, pp. 237

–244

.18.

Laura

, P. A. A.

, Maurizi

, M. J.

, and Pombo

, J. L.

, 1975

, “A Note on the Dynamic Analysis of an Elastically Restrained-Free Beam with a Mass at the Free End

,” J. Sound Vib.

, 41

, pp. 397

–405

.19.

Laura

, P. A. A.

, Susemihl

, E. A.

, Pombo

, J. L.

, Luisoni

, L. E.

, and Gelos

, R.

, 1977

, “On the Dynamic Behavior of Structural Elements Carrying Elastically Mounted, Concentrated Masses

,” Appl. Acoust.

, 10

, pp. 121

–145

.20.

Bapat

, C. N.

, and Bapat

, C.

, 1987

, “Natural Frequencies of a Beam with Nonclassical Boundary Conditions and Concentrated Masses

,” J. Sound Vib.

, 112

, pp. 177

–182

.21.

Ercoli

, L.

, and Laura

, P. A. A.

, 1987

, “Analytical and Experimental Investigation on Continuous Beams Carrying Elastically Mounted Masses

,” J. Sound Vib.

, 114

, pp. 519

–533

.22.

Larrondo

, H.

, Avalos

, D.

, and Laura

, P. A. A.

, 1992

, “Natural Frequencies of a Bernoulli Beam Carrying an Elastically Mounted Concentrated Mass

,” Ocean Eng.

, 19

, pp. 461

–468

.23.

Abramovich

, H.

, and Hamburger

, O.

, 1992

, “Vibration of a Cantilever Timoshenko Beam with Translational and Rotational Springs and with Tip Mass

,” J. Sound Vib.

, 154

, pp. 67

–80

.24.

Rossi

, R. E.

, Laura

, P. A. A.

, Avalos

, D. R.

, and Larrondo

, H. O.

, 1993

, “Free Vibrations of Timoshenko Beams Carrying Elastically Mounted, Concentrated Masses

,” J. Sound Vib.

, 165

, pp. 209

–223

.25.

Gurgoze

, M.

, 1996

, “On the Eigenfrequencies of a Cantilever Beam with Attached Tip Mass and a Spring-Mass System

,” J. Sound Vib.

, 190

, pp. 149

–162

.26.

Jen

, M. U.

, and Magrab

, E. B.

, 1993

, “Natural Frequencies and Mode Shapes of Beams Carrying a Two-Degree-of-Freedom Spring-Mass System

,” ASME J. Vibr. Acoust.

, 115

, pp. 202

–209

.27.

Wu

, J. S.

, and Huang

, C. G.

, 1995

, “Free and Forced Vibrations of a Timoshenko Beam with any Number of Translational and Rotational Springs and Lumped Masses

,” Int. J. Commun. Num. Meth. Eng.

, 11

, pp. 743

–756

.28.

Chang

, T. P.

, and Chang

, C. Y.

, 1998

, “Vibration Analysis of Beams with a Two Degree-of-Freedom Spring-Mass System

,” Int. J. Solids Struct.

, 35

, pp. 383

–401

.29.

Wu

, J. S.

, and Chou

, H. M.

, 1998

, “Free Vibration Analysis of a Cantilever Beam Carrying any Number of Elastically Mounted Pointed Masses with the Analytical-and-Numerical-Combined Method

,” J. Sound Vib.

, 213

, pp. 317

–332

.30.

Wu

, J. S.

, and Chou

, H. M.

, 1999

, “A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying any Number of Sprung Masses

,” J. Sound Vib.

, 220

, pp. 451

–468

.31.

Wu

, J. J.

, and Whittaker

, A. R.

, 1999

, “The Natural Frequencies and Mode Shapes of a Uniform Beam with Multiple Two-DOF Spring-Mass Systems

,” J. Sound Vib.

, 227

, pp. 361

–381

.32.

Dowell

, E. H.

, 1979

, “On Some General Properties of Combined Dynamical Systems

,” ASME J. Appl. Mech.

, 46

, pp. 206

–209

.33.

Nicholson

, J. W.

, and Bergman

, L. A.

, 1986

, “Free Vibration of Combined Dynamical Systems

,” J. Eng. Mech.

, 112

, pp. 1

–13

.34.

Howson

, W. P.

, and Williams

, F. W.

, 1977

, “Compact Computation of Natural Frequencies and Buckling Loads for Plane Frames

,” Int. J. Numer. Methods Eng.

, 11

, pp. 1067

–1081

.35.

Howson

, W. P.

, Banerjee

, J. R.

, and Williams

, F. W.

, 1983

, “Concise Equations and Program for Exact Eigensolutions of Plane Frames including Member Shear

,” Adv. Eng. Software

, 5

, pp. 137

–141

.36.

Kolousek, V., 1973,

*Dynamics in Engineering Structures*, Butterworths, London.37.

Wittrick

, W. H.

, and Williams

, F. W.

, 1971

, “A General Algorithm for Computing Natural Frequencies of Elastic Structures

,” Q. J. Mech. Appl. Math.

, 24

, pp. 263

–284

.38.

Anderson, M. S., Williams, F. W., Banerjee, J. R., Durling, B. J., Herstrom, C. L., Kennedy D., and Warnaar, D. B., 1986, “User Manual BUNVIS-RG: An Exact Buckling and Vibration Program for Lattice Structures, with Repetitive Geometry and Substructuring option,” NASA Tech. Memo. 87669.

39.

Cheng

, F. Y.

, 1970

, “Vibration of Timoshenko Beams and Frameworks

,” J. Struct. Div. ASCE

, 96

, pp. 551

–571

.40.

Wang

, T. M.

, and Kinsman

, T. A.

, 1971

, “Vibration of Frame Structures According to the Timoshenko Theory

,” J. Sound Vib.

, 14

, pp. 215

–227

.41.

Howson

, W. P.

, and Williams

, F. W.

, 1973

, “Natural Frequencies of Frames with Axially Loaded Timoshenko Members

,” J. Sound Vib.

, 26

, pp. 503

–515

.42.

Cheng

, F. Y.

, and Tseng

, W. H.

, 1973

, “Dynamic Stiffness Matrix of Timoshenko Beam Columns

,” J. Struct. Div. ASCE

, 99

, 527

–549

.43.

Banerjee

, J. R.

, 1996

, “Dynamic Stiffness Formulation for Structural Elements: A General Approach

,” Comput. Struct.

, 63

, pp. 101

–103

.44.

Clough, R. W., and Penzien, J., 1975,

*Dynamics of Structures*, McGraw-Hill, Singapore.Copyright © 2003

by ASME

You do not currently have access to this content.