This paper presents the first-known exact solutions for the vibration of multi-span rectangular Mindlin plates with two opposite edges simply supported. The Levy type solution method and the state-space technique are employed to develop an analytical approach to deal with the vibration of rectangular Mindlin plates of multiple spans. Exact vibration frequencies are obtained for two-span square Mindlin plates with varying span ratios and two-, three- and four-equal-span rectangular Mindlin plates. The influence of the span ratios, the number of spans and plate boundary conditions on the vibration behavior of square and rectangular Mindlin plates is examined. The presented exact vibration results may serve as benchmark solutions for such plates.

1.
Veletsos
,
A. S.
, and
Newmark
,
N. M.
,
1956
, “
Determination of Natural Frequencies of Continuous Plates Hinged Along Two Opposite Edges
,”
ASME J. Appl. Mech.
,
23
, pp.
97
102
.
2.
Ungar
,
E. E.
,
1961
, “
Free Oscillations of Edge-Connected Simply Supported Plate Systems
,”
ASME J. Eng. Ind.
,
83
, pp.
434
440
.
3.
Bolotin
,
V. V.
,
1961
, “
A Generalization of the Asymptotic Method of the Eigenvalue Problems for Rectangular Regions (in Russian)
,”
Inzh. Z.
,
3
, pp.
86
92
.
4.
Moskalenko
,
V. N.
, and
Chen
,
D. L.
,
1965
, “
On the Natural Vibrations of Multispan Plates (in Russian)
,”
Prik. Mekh.
,
1
, pp.
59
66
.
5.
Cheung
,
Y. K.
, and
Cheung
,
M. S.
,
1971
, “
Flexural Vibrations of Rectangular and Other Polygonal Plates
,”
J. Eng. Mech. Div.
,
97
, pp.
391
411
.
6.
Elishakoff
,
I.
, and
Sternberg
,
A.
,
1979
, “
Eigenfrequencies of Continuous Plates With Arbitrary Number of Equal Spans
,”
ASME J. Appl. Mech.
,
46
, pp.
656
662
.
7.
Azimi
,
S.
,
Hamilton
,
J. F.
, and
Soedel
,
W.
,
1984
, “
The Receptance Method Applied to the Free Vibration of Continuous Rectangular Plates
,”
J. Sound Vib.
,
93
, pp.
9
29
.
8.
Mizusawa
,
T.
, and
Kajita
,
T.
,
1984
, “
Vibration of Continuous Skew Plates
,”
Earthquake Eng. Struct. Dyn.
,
12
, pp.
847
850
.
9.
Kim
,
C. S.
, and
Dickinson
,
S. M.
,
1987
, “
The Flexural Vibration of Line Supported Rectangular Plate Systems
,”
J. Sound Vib.
,
114
, pp.
129
142
.
10.
Liew
,
K. M.
, and
Lam
,
K. Y.
,
1991
, “
Vibration Analysis of Multi-Span Plates Having Orthogonal Straight Edges
,”
J. Sound Vib.
,
147
, pp.
255
264
.
11.
Zhou
,
D.
,
1994
, “
Eigenfrequencies of Line Supported Rectangular Plates
,”
Int. J. Solids and Struct.
,
31
, pp.
347
358
.
12.
Wei, G. W., Zhao, Y. B., and Xiang, Y., (in press), “Discrete Singular Convolution and Its Application to the Analysis of Plates with Internal Supports. I. Theory and Partial Line Supports,” Int. J. Numer. Methods Eng.
13.
Liew
,
K. M.
, and
Wang
,
C. M.
,
1993
, “
Flexural Vibration of Inplane Loaded Plates With Straight-line and Curved Internal Supports
,”
ASME J. Vibr. Acoust.
,
115
, pp.
441
447
.
14.
Liew
,
K. M.
, and
Wang
,
C. M.
,
1993
, “
Vibration Studies on Skew Plates-Treatment of Internal Line Supports
,”
Comput. Struct.
,
49
, pp.
941
951
.
15.
Xiang
,
Y.
,
Zhao
,
Y. B.
, and
Wei
,
G. W.
,
2002
, “
Levy Solutions for Vibration of Multi-Span Rectangular Plates
,”
Int. J. Mech. Sci.
,
44
, pp.
1195
1218
.
16.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
,
1995
, “
Research on Thick Plate Vibration—A Literature Survey
,”
J. Sound Vib.
,
180
, pp.
163
176
.
17.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
18.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
54
, pp.
745
752
.
19.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
,
1993
, “
Transverse Vibration of Thick Rectangular Plates—II. Inclusion of Oblique Internal Line Supports
,”
Comput. Struct.
,
49
, pp.
31
58
.
20.
Liew
,
K. M.
,
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Lim
,
M. K.
,
1994
, “
Vibration of Rectangular Mindlin Plates with Intermediate Stiffeners
,”
ASME J. Vibr. Acoust.
,
116
, pp.
529
535
.
21.
Xiang
,
Y.
,
Kitipornchai
,
S.
,
Liew
,
K. M.
, and
Wang
,
C. M.
,
1994
, “
Flexural Vibration of Skew Mindlin Plates with Oblique Internal Line Supports
,”
J. Sound Vib.
,
178
, pp.
535
551
.
22.
Kong
,
J.
, and
Cheung
,
Y. K.
,
1995
, “
Vibration of Shear-Deformable Plates with Intermediate Line Supports: a Finite Layer Approach
,”
J. Sound Vib.
,
184
, pp.
639
649
.
23.
Khdeir
,
A. A.
, and
Librescu
,
L.
,
1988
, “
Analysis of Symmetric Cross-Ply Elastic Plates Using a Higher-Order Theory, Part II: Buckling and Free Vibration
,”
Compos. Struct.
,
9
, pp.
259
277
.
24.
Chen
,
W. C.
, and
Liu
,
W. H.
,
1990
, “
Deflections and Free Vibrations of Laminated Plates-Levy-Type Solutions
,”
Int. J. Mech. Sci.
,
32
, pp.
779
793
.
25.
Lee
,
S. Y.
, and
Lin
,
S. M.
,
1993
, “
Levy-Type Solution for the Analysis of Nonuniform Plates
,”
Comput. Struct.
,
49
, pp.
931
939
.
26.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
,
1996
, “
Analytical Buckling Solutions for Mindlin Plates Involving Free Edges
,”
Int. J. Mech. Sci.
,
38
, pp.
1127
1138
.
27.
Xiang
,
Y.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
,
1996
, “
Exact Buckling Solutions for Composite Laminates: Proper Free Edge Conditions Under In-Plane Loadings
,”
Acta Mech.
,
117
, pp.
115
128
.
You do not currently have access to this content.