Abstract

Utilizing heat transfer augmentation features at the inlet of aircraft engines as an additional heat sink requires further understanding of entry region heat transfer and flow field interactions. The effect of asymmetric flow fields or distortions on entry region heat transfer has not been studied. Typically, distortion screens are attached to the inlet of an engine to simulate non-ideal flow that occurs in flight. Because the addition of augmentation features will create a near-wall distortion that can impact downstream aircraft components, comparing entry region features to standard distortion screens can provide insight on the performance impact to aircraft engines. This study investigates the effect of inlet distortion screens on pin fin entry region heat transfer, in order to understand if flow field disturbances disrupt the benefits of augmented entry region heat transfer. In addition, the superposition of the distortion caused by pin fin features onto a screen distorted smooth entry region is also tested. Three distortion screens are investigated with pin fin arrays: tip, hub, and an asymmetric aircraft distortion, each based on SAE standard designs. Reynolds numbers ranging from 1.5 × 105 to 3.50 × 105 are investigated. From this study, inlet heat transfer augmentation due to pin fins is not significantly impacted by inlet distortion flowfields. This is due to the near-wall boundary layer impact of augmentation features overshadowing the effect of distortion. Due to the insensitivity of the near-wall boundary layer for pin fin arrays with distortions, superimposing the smooth entry region distorted flow with the non-distorted pin fin array flow provides an adequate estimate of the flow field of the pin fin array with a distorted inlet.

References

1.
van Heerden
,
A. S. J.
,
Judt
,
D. M.
,
Jafari
,
S.
,
Lawson
,
C. P.
,
Nikolaidis
,
T.
, and
Bosak
,
D.
,
2022
, “
Aircraft Thermal Management: Practices, Technology, System Architectures, Future Challenges, and Opportunities
,”
Prog. Aerosp. Sci.
,
128
, p.
100767
.
2.
SAE International
,
2017
,
Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines AIR1419c
,
SAE International
,
Warrendale, PA
.
3.
Murphy
,
J. P.
, and
MacManus
,
D. G.
,
2011
, “
Ground Vortex Aerodynamics Under Crosswind Conditions
,”
Exp. Fluids
,
50
(
1
), pp.
109
124
.
4.
Li
,
H.
,
Teng
,
J.
,
Luo
,
G.
,
Zheng
,
S.
,
Lv
,
C.
, and
Qiu
,
C.
,
2023
, “
Experimental Study on Total Pressure Distortion Characteristics of a High Bypass Ratio Turbofan Engine
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition.
,
Boston, MA
,
June 26–30
.
5.
Guimarães
,
T.
,
Lowe
,
K. T.
, and
O’Brien
,
W. F.
,
2018
, “
StreamVane Turbofan Inlet Swirl Distortion Generator: Mean Flow and Turbulence Structure
,”
J. Propuls. Power
,
34
(
2
), pp.
340
353
.
6.
Ferrar
,
A. M.
, and
O’Brien
,
W. F.
,
2012
, “
Fan Response to Total Pressure Distortions Produced by Boundary Layer Ingesting Serpentine Inlets
,”
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Reston, VA
,
July 30–Aug. 1
.
7.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S. A.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.
8.
SAE International
,
2017
.
Gas Turbine Engine Inlet Flow Distortion Guidelines ARP1420C
,
SAE International
,
Warrendale, PA
.
9.
Wadia
,
A. R.
,
Szucs
,
P. N.
,
Crall
,
D. W.
, and
Rabe
,
D. C.
,
2002
, “
Forward Swept Rotor Studies in Multistage Fans With Inlet Distortion
,”
Proceedings of the ASME Turbo Expo
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
11
21
.
10.
Kotsiopoulos
,
P.
,
Anastasiou
,
S.
,
Lekas
,
T. I.
,
Kottarakos
,
A.
,
Haslam
,
A. S.
, and
Pilidis
,
P.
,
2004
, “
Influence of Degradation and Inlet Distortion on Gas Turbine Performance
,”
Int. J. Turbo Jet Engines
,
21
(
1
), pp.
47
56
.
11.
Gladin
,
J.
,
Sands
,
J.
,
Kestner
,
B.
, and
Mavris
,
D.
,
2012
, “
Effects of Boundary Layer Ingesting (BLI) Propulsion Systems on Engine Cycle Selection and HWB Vehicle Sizing
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Reston, VA
,
Jan. 9–12
.
12.
Lucas
,
J. R.
,
O’Brien
,
W. F.
, and
Ferrar
,
A. M.
,
2014
, “
Effect of BLI-Type Inlet Distortion on Turbofan Engine Performance
,”
Proceedings of ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, Vol. 1A, pp.
1
18
.
13.
El-Sayed
,
S. A.
,
EL-Sayed
,
S. A.
, and
Saadoun
,
M. M.
,
2012
, “
Experimental Study of Heat Transfer to Flowing Air Inside a Circular Tube With Longitudinal Continuous and Interrupted Fins
,”
J. Electron. Cool. Therm. Control
,
2
(
1
), pp.
1
16
.
14.
Defoe
,
J. J.
,
Etemadi
,
M.
, and
Hall
,
D. K.
,
2018
, “
Fan Performance Scaling With Inlet Distortions
,”
ASME J. Turbomach.
,
140
(
7
), p.
071009
.
15.
Lundburg
,
E. C.
,
Lynch
,
S. P.
, and
Lyall
,
M. E.
,
2023
, “
Heat Transfer Augmentation With Pin Fins in the Entry Region of Circular Channels
,”
AIAA SCITECH 2023 Forum
,
Reston, VA
,
Jan. 23–27
.
16.
Barbin
,
A. R.
, and
Jones
,
J. B.
,
1963
, “
Turbulent Flow in the Inlet Region of a Smooth Pipe
,”
ASME J. Fluids Eng.
,
85
(
1
), pp.
29
33
.
17.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
18.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
19.
Saltzman
,
D.
, and
Lynch
,
S.
,
2021
, “
Flow-Field Measurements in a Metal Additively Manufactured Offset Strip Fin Array Using Laser Doppler Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041502
.
20.
Guimaraes
,
T. B.
,
Lowe
,
K. T.
,
Nelson
,
M.
,
O’Brien
,
W. F.
, and
Kirk
,
C.
,
2015
, “
Stereoscopic PIV Measurements in a Turbofan Engine Inlet With Tailored Swirl Distortion
,”
31st AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
Reston, VA
,
June 22–26
.
21.
Migliorini
,
M.
,
Zachos
,
P. K.
,
MacManus
,
D. G.
, and
Haladuda
,
P.
,
2023
, “
S-Duct Flow Distortion With Non-Uniform Inlet Conditions
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
237
(
2
), pp.
357
373
.
22.
Wang
,
Z.
, and
Gursul
,
I.
,
2012
, “
Unsteady Characteristics of Inlet Vortices
,”
Exp. Fluids
,
53
(
4
), pp.
1015
1032
.
23.
Puzu
,
N.
,
Prasertsan
,
S.
, and
Nuntadusit
,
C.
,
2019
, “
Heat Transfer Enhancement and Flow Characteristics of Vortex Generating Jet on Flat Plate With Turbulent Boundary Layer
,”
Appl. Therm. Eng.
,
148
, pp.
196
207
.
24.
SAE International
,
2019
,
AIR5867—Assessment of the Inlet/Engine Total Temperature Distortion Problem
,
SAE International
,
Warrendale, PA
.
25.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
26.
Guimaraes Bucalo
,
T.
,
Lowe
,
K. T.
, and
O’Brien
,
W. F.
,
2016
, “
An Overview of Recent Results Using the StreamVane Method for Generating Tailored Swirl Distortion in Jet Engine Research
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
.
You do not currently have access to this content.