Abstract

Heavy-duty centrifugal fans require high reliability and first-class performance. Besides, extreme conditions and harsh environments are often encountered, such as in the papermaking process, in steel or cement plants or the chemical and petrochemical industry. Therefore, the design of high-performance heavy-duty industrial fans requires robust yet efficient solutions. The previous work indicates a high aerodynamic and aeroacoustic sensitivity concerning the specific position of the volute cutoff (tongue). This effect will be further investigated, not by directly changing the orientation of the cutoff, but by varying the position of the impeller relative to a fixed volute casing. The initial evaluation is done through a numerical study of three influencing parameters, which allow the aerodynamic dependencies to be modeled using low-layer artificial networks. Subsequently, extensive experimental studies were carried out to validate the aerodynamic dependencies and also to incorporate information on the aeroacoustic performance. The obtained results show that the operating point represents the key factor in determining the optimal positioning, with qualitatively comparable dependencies found for both tested fans. From an aeroacoustic point of view, the determined optimal configuration does not necessarily coincide with the observed aerodynamic desires, so careful analysis and a reasonable compromise are required, motivating for a multi-objective optimization process.

References

1.
Eck
,
B.
,
2003
,
Ventilatoren, Entwurf und Betrieb der Radial-, Axial- und Querstromventilatoren
,
Springer Verlag
,
Berlin, Germany
, ISBN 978-3-642-55650-0.
2.
Neise
,
W.
,
1976
, “
Noise Reduction in Centrifugal Fans: A Literature Survey
,”
J. Sound Vib.
,
45
(
3
), pp.
375
403
.
3.
Bommes
,
L.
,
1997
, “
Entwurfspolynome zur optimalen Auswahl und Bemessung von Industrieventilatoren Radialer Bauart. V
,”
Proceedings of Wissenschaftlich-Technische Konferenz Industrieventilatoren
,
Zakopane, Poland
,
Oct. 6–8
, pp.
39
51
.
4.
Patil
,
S. R.
,
Chavan
,
S. T.
,
Jadhav
,
N. S.
, and
Vadgeri
,
S. S.
,
2017
, “
Effect of Volute Tongue Clearance Variation on Performance of Centrifugal Blower by Numerical and Experimental Analysis
,”
7th International Conference of Materials Processing and Characterization (ICMPC 2017)
,
Hyderabad, India
,
Mar. 17–19
.
5.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
,
119
(
3
), pp.
506
515
.
6.
Zhang
,
J.
,
Chu
,
W.
,
Zhang
,
H.
,
Wu
,
Y.
, and
Dong
,
X.
,
2016
, “
Numerical and Experimental Investigations of the Unsteady Aerodynamics and Aero-Acoustics Characteristics of a Backward Curved Blade Centrifugal Fan
,”
Appl. Acoust.
,
110
, pp.
256
267
.
7.
Manoochehr
,
D.
,
Frank
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical and Experimental Study on the Tonal Noise Generation of a Radial Fan
,”
ASME J. Turbomach.
,
137
(
10
), p.
101005
.
8.
Bommes
,
L.
,
Fricke
,
J.
, and
Grundmann
,
R.
,
2002
,
Ventilatoren
,
Vulkan Verlag
,
Essen, Germany
, ISBN 3-8027-3200-6.
9.
Bohl
,
W.
, and
Elmendorf
,
W.
,
2013
,
Stroemungsmaschinen I, 11. Edt.
,
Vogel Buchverlag
,
Wuerzburg, Germany
, ISBN 978-3-8343-3288-2.
10.
Bommes
,
L.
,
1956
, “Studie über die Verluste am Eintritt bei Hochleistungs-Ventilatoren,”
Paul Pollrich & Comp.
,
Moenchengladbach, Germany
, Internal Report, Report No. 03/56.
11.
Joseph
,
V. R.
, and
Hung
,
Y.
,
2008
, “
Orthogonal-MaxiMin Latin Hypercube Designs
,”
Stat. Sin.
,
18
(
1
), pp.
171
186
.
12.
Zhang
,
C.
, and
Shah
,
J. A.
,
2015
, “
On Fairness in Decision-Making Under Uncertainty: Definitions, computation, and comparison
,”
Proceedings of the 29th AAAI Conference on Artificial Intelligence
,
Austin, TX
,
Jan. 25–30
, pp.
3642
3648
.
13.
Siebertz
,
K.
,
van Bebber
,
D.
, and
Hochkirchen
,
T.
,
2010
,
Statistische Versuchsplanung
,
Springer Verlag
,
Berlin
.
14.
Biedermann
,
T. M.
,
Moutamassik
,
Y.
, and
Kameier
,
F.
,
2021
, “
Feasibility Study on the Effect of Blade Inclination for Heavy Duty Centrifugal Fans—Aerodynamic Aspects
,”
Proceedings of ASME Turbo Expo 2021, Virtual Event
, Paper No. GT2021-58505.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
16.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comp. Phys.
,
12
(
6
), p.
620
.
17.
Juretic
,
F.
,
2015
, “
User Guide cfMesh v1.1
,”
Creative Fields, Ltd.
,
Zagreb, Croatia
.
18.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the “Law of the Wall”
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.
19.
Fangqing
,
L.
,
2016
, “
A Thorough Description of How Wall Functions Are Implemented in OpenFOAM
,”
Proceedings of CFD With OpenSource Software
, https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf, Accessed April 5, 2023.
20.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
,
5
(
6
), pp.
989
993
.
21.
Biedermann
,
T. M.
,
Reich
,
M.
, and
Paschereit
,
C. O.
,
2020
, “
Multi-Objective Modeling of Leading-Edge Serrations Applied to Low-Pressure Axial Fans
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111009
.
22.
Coello
,
C. A. C.
,
Pulido
,
G. T.
, and
Lechuga
,
M. S.
,
2004
, “
Handling Multiple Objectives With Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
256
279
.
23.
ISO
,
2009
, “
Acoustics—Determination of Sound Power Radiated Into a Duct by Fans and Other Air-Moving Devices—In-Duct Method
,” ISO 5136:2003.
24.
Madison
,
R. D.
,
1949
,
Fan Engineering (Handbook)
, 5th ed.,
Buffalo Forge Company
,
Buffalo, NY
.
You do not currently have access to this content.