Abstract

Understanding basic aerodynamic and thermodynamic processes in engine components is critical to achieving higher efficiencies and lower fuel consumption in aircraft engines. To aid in this process, a linear compressor cascade was investigated in the high-speed cascade wind tunnel of the Institute of Jet Propulsion to quantify the influence of heat transfer on the temperature distribution in the wake and, finally, the profile loss. For this purpose, a patented five-hole probe with an integrated thermocouple was developed and applied for steady measurements. Additionally, a hot-wire measurement setup was implemented to receive temperature fluctuations via the constant current (CC) mode as well as velocity fluctuations via the constant temperature (CT) mode. A novel method for a two-way temperature and velocity correction for the two types of hot-wire measurement is presented. Good agreement between the measurement data of the five-hole probe and averaged data from hot-wire anemometry was found. The temperature distribution indicates the occurrence of energy separation which in some cases is overlain with the effects of heat transfer. In addition, the analysis of unsteady fluctuations of temperature and velocity give more detailed information about the vortex shedding in the wake, including the size of the vortices. Finally, this is the first discussion of energy separation at a compressor cascade combined with overlain effects of heat transfer on the blade surface.

References

1.
Eckert
,
E. R. G.
, and
Weise
,
W.
,
1942
, “
Messungen der Temperaturverteilung auf der Oberfläche Schnell Angeströmter Unbeheizter Körper
,”
Forschung auf dem Gebiet des Ingenieurwesens
,
13
(
6
), pp.
246
254
.
2.
Ackeret
,
J.
,
1954
, “Über die Temperaturverteilung Hinter Angeströmten Zylindern,”
Mitteilungen aus dem Institut für Aerodynamik
, ETH Zürich,
Leemann
,
Zurich, Switzerland
.
3.
Thomann
,
H.
,
1959
, “Measurement of the Recovery Temperature in the Wake of a Cylinder and of a Wedge at Mach Numbers Between 0.5 and 3,”
FFA Report
,
Vol. 84
,
The Aeronautical Research Institute of Sweden
,
Stockholm, Sweden
.
4.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Riner
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
,
1987
, “
Energy Separation in a Vortex Street
,”
J. Fluid Mech.
,
178
, pp.
1
29
.
5.
Carscallen
,
W. E.
,
Currie
,
T. C.
,
Hogg
,
S. I.
, and
Gostelow
,
J. P.
,
1999
, “
Measurement and Computation of Energy Separation in the Vortical Wake Flow of a Turbine Nozzle Cascade
,”
ASME J. Turbomach.
,
121
(
4
), pp.
703
708
.
6.
Ackerman
,
J. R.
,
2004
, “
Unsteady Energy Separation and Base Pressure Distributions in Subsonic Crossflow Around a Circular Cylinder
,”
Ph.D. thesis
,
University of Leicester
.
7.
Gostelow
,
J. P.
,
Platzer
,
M. F.
, and
Carscallen
,
W. E.
,
2006
, “
On Vortex Formation in the Wake Flows of Transonic Turbine Blades and Oscillating Airfoils
,”
ASME J. Turbomach.
,
128
(
3
), pp.
528
535
.
8.
Schultz-Grunow
,
F.
,
2013
, “
Turbulent Heat Transfer in Stratified Flow
,”
Theory and Fundamental Research in Heat Transfer, Proceedings of the Annual Meeting the American Society of Mechanical Engineers
, pp.
87
103
.
9.
Schlichting
,
H.
,
1956
, “The Variable Density High Speed Cascade Wind Tunnel of the Deutsche Forschungsanstalt für Luftfahrt, Braunschweig,”
Eighth Meeting of the Wind-Tunnel and Model Testing Panel of the Advisory Group for Aeronautical Research and Development
,
Rome, Italy
,
Feb. 20–25
.
10.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High-Speed Cascade Wind-Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Genoa, Italy
,
Oct. 24–25
, pp. 1–7.
11.
Aberle
,
S.
,
Bitter
,
M.
,
Hoefler
,
F.
,
Carretero Benignos
,
J.
, and
Niehuis
,
R.
,
2019
, “
Implementation of an In-Situ Infrared Calibration Method for Precise Heat Transfer Measurements on a Linear Cascade
,”
ASME J. Turbomach.
,
141
(
2
), p.
021004
.
12.
Aberle-Kern
,
S.
,
Ripplinger
,
T.
, and
Niehuis
,
R.
,
2020
, “
Loss Determination at a Linear Cascade Under Consideration of Thermal Effects
,”
Aeronaut. J.
,
124
(
1280
), pp.
1592
1614
.
13.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
14.
Rose
,
M.
,
Schüpbach
,
P.
, and
Mansour
,
M.
,
2013
, “
The Thermodynamics of Wake Blade Interaction in Axial Flow Turbines: Combined Experimental and Computational Study
,”
ASME J. Turbomach.
,
135
(
3
), p.
031015
.
15.
Anthoine
,
J.
,
Arts
,
T.
,
Boerrigter
,
H.
,
Buchlin
,
J.-M.
,
Carbonaro
,
M.
,
Degrez
,
G.
,
Dénos
,
R.
,
Fletcher
,
D.
,
Olivari
,
D.
,
Riethmuller
,
M. L.
, and
van den Braembussche
,
R. A.
,
2009
,
Measurement Techniques in Fluid Dynamics: An Introduction
, 3rd ed., Lecture Series Monographs,
Von Karman Institute for Fluid Dynamics
,
Brussels
.
16.
Bohn
,
D.
,
1977
, “
Untersuchung Zweier Verschiedener Axialer Überschallverdichterstufen Unter Besonderer Berücksichtigung der Wechselwirkungen Zwischen Lauf- und Leitrad
,”
Ph.D. thesis
,
RWTH Aachen
.
17.
Breitkopf
,
G.
,
Wittig
,
S.
, and
Kim
,
S.
,
1980
, “
Recovery-Faktor des Frontal Angeströmten Zylindrischen Mantelthermoelementes mit Ebener Stirnfläche
,”
Wärme- und Stoffübertragung
,
13
(
4
), pp.
287
292
.
18.
Bryer
,
D. W.
, and
Pankhurst
,
R. C.
,
1971
,
Pressure-Probe Methods for Determining Wind Speed and Flow Direction
,
National Physical Laboratory
,
London
.
19.
Kiel
,
G.
,
1935
,
Total-Head Meter With Small Sensitivity to Yaw
, NACA TM No. 775,
R. Oldenbourg
,
München, Berlin
.
20.
Kern
,
F.
,
Bindl
,
S.
,
Kreitz
,
K.
, and
Niehuis
,
R.
,
2019
, “
Raising The Technology Level of an Instrumented Jet Engine Compressor Vane Fabricated By Additive Manufacturing
,”
Proceedings of the XXIV International Symposium on Air Breathing Engines (ISABE), ISABE-2019-24028
,
Canberra, Australia
,
Sept. 22–27
, pp. 1–15.
21.
Meriam
,
J. L.
, and
Kraige
,
L. G.
,
2012
,
Engineering Mechanics: Dynamics
, 7th ed.,
Vol. 2
,
John Wiley & Sons
,
New York
.
22.
Aberle
,
S.
, and
Niehuis
,
R.
,
2019
,
Strömungssonde. Deutsches Patent- und Markenamt, German patent DE 10 2017 120 224.2, Universität der Bundeswehr München
.
23.
Hölle
,
M.
,
Bartsch
,
C.
,
Hönen
,
H.
,
Fröbel
,
T.
,
Metzler
,
T.
, and
Jeschke
,
P.
,
2015
, “
Measurement Uncertainty Analysis
for
Multi-Hole Pressure Probes Combined With a Temperature Sensor
,”
Proceedings of International Gas Turbine Congress 2015
,
Tokyo, Japan
,
Nov. 15–20
, pp.
1527
1538
.
24.
Bruun
,
H. H.
,
1996
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford Science Publications
,
Oxford
.
25.
King
,
L. V.
,
1914
, “
On the Convection of Heat From Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires With Applications to Hot-Wire Anemometry
,”
Philos. Trans. R. Soc. London Ser. A
,
214
(
509–522
), pp.
373
432
.
26.
Jørgensen
,
F. E.
,
2001
,
How to Measure Turbulence With Hot-Wire Anemometers: A Practical Guide
.
Dantec Dynamics
,
Skovlunde, Denmark
.
27.
Gomes
,
R.
, and
Niehuis
,
R.
,
2018
, “
Development of a Novel Anemometry Technique for Velocity and Temperature Measurement
,”
Exp. Fluids
,
59
(
9
), p.
142
.
28.
Dantec Dynamics
,
2007
,
Temperature Module 90C20: Installation & User Guide
,
Dantec Dynamics
,
Skovlunde, Denmark
.
29.
Johnston
,
R.
, and
Fleeter
,
S.
,
1997
, “
Compressible Flow Hot-Wire Calibration
,”
Exp. Fluids
,
22
(
5
), pp.
444
446
.
30.
Barlow
,
R. J.
,
1993
,
Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences
, 1st ed.,
John Wiley & Sons
,
Hoboken
.
31.
Nyquist
,
H.
,
1932
, “
Regeneration Theory
,”
Bell Syst. Tech. J.
,
11
(
1
), pp.
126
147
.
32.
Asai
,
M.
,
Inasawa
,
A.
,
Konishi
,
Y.
,
Hoshino
,
S.
, and
Takagi
,
S.
,
2011
, “
Experimental Study on the Instability of Wake of Axisymmetric Streamlined Body
,”
J. Fluid Mech.
,
675
, pp.
574
595
.
33.
Stotz
,
S.
,
Guendogdu
,
Y.
, and
Niehuis
,
R.
,
2017
, “
Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
,”
ASME J. Turbomach.
,
139
(
5
), p.
051007
.
You do not currently have access to this content.