Abstract

Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect that has on the body force model predictions is unknown, and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.

References

1.
Khaled
,
M.
,
Ramadan
,
M.
,
El-Hage
,
H.
,
Elmarakbi
,
A.
,
Harambat
,
F.
, and
Peerhossaini
,
H.
,
2014
, “
Review of Underhood Aerothermal Management: Towards Vehicle Simplified Models
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
842
858
.
2.
Ding
,
W.
,
Williams
,
J.
,
Karanth
,
D.
, and
Sovani
,
S.
,
2006
, “
CFD Application in Automotive Front-End Design
,”
Proceedings of the SAE 2006 World Congress & Exhibition
,
Detroit, MI
, Society of Automotive Engineers, SAE Technical Paper 2006-01-0337.
3.
Franchetta
,
M.
,
Suen
,
K.
, and
Bancroft
,
T.
,
2007
, “
Pseudo-Transient Computational Fluid Dynamics Analysis of An Underbonnet Compartment During Thermal Soak
,”
Proc. Inst. Mech. Eng., Part D: J. Auto. Eng.
,
221
(
10
), pp.
1209
1220
.
4.
Natarajan
,
S.
,
Mulemane
,
A.
, and
Dube
,
P.
,
2008
, “
Underhood and Underbody Studies in a Full Vehicle Model Using Different Approaches to Model Fan and Predict Recirculation
,”
Proceedings of the 2008 SAE World Congress & Exhibition
,
Detroit, MI
, SAE Technical Paper 2008-01-1173.
5.
Kim
,
H. J.
, and
Kim
,
C. -J.
,
2008
, “
A Numerical Analysis for the Cooling Module Related to Automobile Air-Conditioning System
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1896
1905
.
6.
Meyer
,
C.
, and
Kroger
,
D.
,
2001
, “
Numerical Simulation of the Flow Field in the Vicinity of An Axial Flow Fan
,”
Int. J. Numer. Methods Fluids
,
36
(
8
), pp.
947
969
.
7.
Tzanos
,
C. P.
, and
Chien
,
T. -H.
,
2002
, “
A Simple Fan Model for Underhood Thermal Management Analyses
,”
Technical Report SAE Technical Paper
.
8.
Sahili
,
A.
,
Zogheib
,
B.
, and
Barron
,
R. M.
,
2013
, “
3D Modeling of Axial Fans
,”
Appl. Math.
,
4
(
4
), pp.
632
651
.
9.
Joo
,
W. G.
, and
Hynes
,
T. P.
,
1997
, “
The Application of Actuator Disks to Calculations of the Flow in Turbofan Installations
,”
ASME J. Turbomach.
,
119
(
4
), pp.
733
741
.
10.
Hawthorne
,
W. R.
,
Mitchell
,
N. A.
,
Mccune
,
J. E.
, and
Tan
,
C. S.
,
1978
, “
Nonaxisymmetric Flow Through Annular Actuator Disks: Inlet Distortion Problem
,”
J. Eng. Power
,
100
(
4
), pp.
604
617
.
11.
Van der Spuy
,
S. J.
,
Le Roux
,
F. N.
,
von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2011
, “
The Simulation of An Axial Flow Fan Performance Curve At Low Flow Rates
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
, American Society of Mechanical Engineers Digital Collection, Paper No. 425–434.
12.
Franzke
,
R.
,
Sebben
,
S.
,
Bark
,
T.
,
Willeson
,
E.
, and
Broniewicz
,
A.
,
2019
, “
Evaluation of the Multiple Reference Frame Approach for the Modelling of An Axial Cooling Fan
,”
Energies
,
12
(
15
), p.
2934
.
13.
ANSYS, Inc.
,
2019
.
ANSYS CFX Solver Theory Guide
, release 18.2 ed.
Canonsburg, PA
, November.
14.
Kobayashi
,
Y.
,
Kohri
,
I.
, and
Matsushima
,
Y.
,
2011
, “
Study of Influence of MRF Method on the Prediction of the Engine Cooling Fan Performance
,”
Proceedings of the 2011 SAE 2011 World Congress & Exhibition
,
Detroit, MI
, SAE Technical Paper 2011-01-0648.
15.
Hall
,
D.
,
Greitzer
,
E.
, and
Tan
,
C.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
16.
Defoe
,
J.
,
Etemadi
,
M.
, and
Hall
,
D.
,
2018
, “
Fan Performance Scaling With Inlet Distortions
,”
ASME J. Turbomach.
,
140
(
7
), p.
071009
.
17.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
18.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2018
, “
Innovations in Body Force Modeling of Transonic Compressor Blade Rows
,”
Int. J. Rot. Mach.
,
2018
(Special Issue), p.
6398501
.
19.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2019
, “
Scaling of Incidence Variations With Inlet Distortion for a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
142
(
2
), p.
021003
.
20.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2017
, “
Hierarchical Immersed Boundary Method With Smeared Geometry
,”
J. Propul. Power.
,
33
(
5
), pp.
1151
1163
.
21.
Marble
,
F. E.
,
1964
, “
Three-Dimensional Flow in Turbomachines
,”
High Speed Aerodynamics Jet Propulsion
,
10
(
10
), pp.
83
166
.
22.
Gong
,
Y.
,
Tan
,
C.
,
Gordon
,
K.
, and
Greitzer
,
E.
,
1999
, “
A Computational Model for Short Wavelength Stall Inception and Development in Multi-Stage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.
23.
Benichou
,
E.
,
Dufour
,
G.
,
Bousquet
,
Y.
,
Binder
,
N.
,
Ortolan
,
A.
, and
Carbonneau
,
X.
,
2019
, “
Body Force Modeling of the Aerodynamics of a Low-Speed Fan Under Distorted Inflow
,”
Int. J. Turbomach. Propuls. Power
,
4
(
3
), p.
29
.
24.
Sato
,
S.
,
Spotts
,
N.
, and
Gao
,
X.
,
2019
, “
Validation of Fan Source Term Model Constructed Without Blade Geometry
,”
Proceedings of the AIAA Scitech 2019 Forum
,
San Diego, CA
, AIAA. p.
1448
.
25.
Minaker
,
Q.
, and
Defoe
,
J.
,
2019
, “
Prediction of Crosswind Separation Velocity for Fan and Nacelle Systems Using Body Force Models: Part 2: Comparison of Crosswind Separation Velocity with and Without Detailed Fan Stage Geometry
,”
Int. J. Turbomach. Propuls. Power
,
4
(
4
), p.
41
.
26.
The OpenFOAM Foundation
,
2019
.
OpenFOAM User’s Guide
, 6 ed.
27.
ANSYS, Inc.
,
2019
.
ANSYS TurboGrid User’s Guide
, release 19.2 ed.
Canonsburg, PA
, November.
28.
Menter
,
F.
,
Langtry
,
R.
, and
Volker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combustion
,
77
(
1–4
), pp.
277
303
.
29.
Roache
,
P. J.
,
1998
,
Fundamentals of Computational Fluid Dynamics
,
Hermosa Publishers
.
30.
Pointwise
,
2019
.
Pointwise User’s Manual
, 18.3R1 ed.
Forth Worth, TX
.
31.
The CGAL Project
,
2020
.
CGAL User and Reference Manual
, 5.0.2 ed. CGAL Editorial Board.
You do not currently have access to this content.