Abstract

This paper presents hot-wire measurements in a wind tunnel, close downstream of basic models of blade sections being representative for low-speed, low-Reynolds number axial fans, in order to explore the signatures of vortex shedding (VS) from the blade profiles. Using the Rankine-type vortex approach, an analytical model was developed on the velocity fluctuation represented by the vortex streets, as an aid in evaluating the experimental data. The signatures of profile VS were distinguished from blunt trailing-edge VS based on Strouhal numbers obtained from the measurements in a case-specific manner. Utilizing the experimental results, the semi-empirical model available in the literature for predicting the frequency of profile VS was extended to low-speed axial fan applications. On this basis, quantitative guidelines were developed for the consideration of profile VS in preliminary design of axial fans in the moderation of VS-induced blade vibration and noise emission.

References

1.
Brooks
,
T. F.
,
Pope
,
D. S.
, and
Marcolini
,
M. A.
,
1989
, “
Airfoil Self-Noise and Prediction
,” NASA Ref. Publication 1218, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890016302.pdf, Accessed March 10, 2021.
2.
Yarusevych
,
S.
, and
Boutilier
,
M. S. H.
,
2011
, “
Vortex Shedding of an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
49
(
10
), pp.
2221
2227
.
3.
Roger
,
M.
, and
Moreau
,
S.
,
2010
, “
Extensions and Limitations of Analytical Airfoil Broadband Noise Models
,”
Int. J. Aeroacoust.
,
9
(
3
), pp.
273
305
.
4.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.
5.
Balla
,
E.
, and
Vad
,
J.
,
2019
, “
A Semi-Empirical Model for Predicting the Frequency of Profile Vortex Shedding Relevant to Low-Speed Axial Fan Blade Sections
,”
Proceedings of the 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (ETC13)
,
Lausanne, Switzerland
, Paper ID: ETC2011-311.
6.
Lee
,
C.
,
Chung
,
M. K.
, and
Kim
,
Y. H.
,
1993
, “
A Prediction Model for the Vortex Shedding Noise From the Wake of an Airfoil or Axial Flow Fan Blades
,”
J. Sound Vib.
,
164
(
2
), pp.
327
336
.
7.
Sasaki
,
S.
,
Kodama
,
Y.
,
Hayashi
,
H.
, and
Hatakeyama
,
M.
,
2005
, “
Influence of the Karman Vortex Street on the Broadband Noise Generated From a Multiblade Fan
,”
J. Therm. Sci.
,
14
(
3
), pp.
198
205
.
8.
Dou
,
H.
,
Li
,
Z.
,
Lin
,
P.
,
Wei
,
Y.
,
Chen
,
Y.
,
Cao
,
W.
, and
He
,
H.
,
2016
, “
An Improved Prediction Model of Vortex Shedding Noise From Blades of Fans
,”
J. Therm. Sci.
,
25
(
6
), pp.
526
531
.
9.
Carolus
,
T.
,
2003
,
Ventilatoren
,
B. G. Teubner Verlag
,
Wiesbaden
.
10.
Paterson
,
R. W.
,
Vogt
,
P. G.
,
Fink
,
M. R.
, and
Munch
,
C. L.
,
1973
, “
Vortex Noise of Isolated Airfoils
,”
J. Aircr.
,
10
(
5
), pp.
296
302
.
11.
Benedek
,
T.
, and
Vad
,
J.
,
2016
, “
An Industrial Onsite Methodology for Combined Acoustic-Aerodynamic Diagnostics of Axial Fans, Involving the Phased Array Microphone Technique
,”
Int. J. Aeroacoust.
,
15
(
1–2
), pp.
81
102
.
12.
Norton
,
M.
, and
Karczub
,
D.
,
2003
,
Fundamentals of Noise and Vibration Analysis for Engineers
,
Cambridge University Press
,
Cambridge
.
13.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
.”
ASME
Paper No. GT2005-68663
.
14.
Burgmann
,
S.
,
Dannemann
,
J.
, and
Schroder
,
W.
,
2008
, “
Time-Resolved and Volumetric PIV Measurements of a Transitional Separation Bubble on an SD7003 Airfoil
,”
Exp. Fluids
,
44
(
4
), pp.
602
622
.
15.
Kirk
,
T.
, and
Yarusevych
,
S.
,
2017
, “
Vortex Shedding Within Laminar Separation Bubbles Forming Over an Airfoil
,”
Exp. Fluids
,
58
(
5
). p.
17
.
16.
Huang
,
R. F.
, and
Lin
,
C. L.
,
1995
, “
Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers
,”
AIAA J.
,
33
(
8
), pp.
1398
1403
.
17.
Balla
,
E.
, and
Vad
,
J.
,
2019
, “
Lift and Drag Force Measurements on Basic Models of Low-Speed Axial Fan Blade Sections
,”
Proc. Inst. Mech. Eng.—Part A: J. Power Energy
,
233
(
2
), pp.
165
175
.
18.
Mueller
,
T. J.
,
1999
, “
Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles
,”
RTO AVT/VKI Special Course, Development and Operation of UAVs for Military and Civil Applications
,
VKI, Belgium
,
Sept. 13–17
, p.
33
.
19.
Vad
,
J.
,
Kwedikha
,
A. R. A.
, and
Jaberg
,
H.
,
2006
, “
Effects of Blade Sweep on the Performance Characteristics of Axial Flow Turbomachinery Rotors
,”
Proc. Inst. Mech. Eng.—Part A: J. Power Energy
,
220
(
7
), pp.
737
749
.
20.
Vad
,
J.
,
Kwedikha
,
A. R. A.
,
Horváth
,
C.
,
Balczó
,
M.
,
Lohász
,
M. M.
, and
Régert
,
T.
,
2007
, “
Aerodynamic Effects of Forward Blade Skew in Axial Flow Rotors of Controlled Vortex Design
,”
Proc. Inst. Mech. Eng.—Part A: J. Power Energy
,
221
(
7
), pp.
1011
1023
.
21.
West
,
G. S.
, and
Apelt
,
C. J.
,
1982
, “
The Effects of Tunnel Blockage and Aspect Ratio on the Mean Flow Past a Circular Cylinder With Reynolds Numbers Between 104 and 105
,”
J. Fluid Mech.
,
114
, pp.
361
377
.
22.
Wallis
,
R. A.
,
1961
,
Axial Flow Fans
,
Newnes
,
London
.
23.
Balla
,
E.
, and
Vad
,
J.
,
2018
, “
Combined Aerodynamic and Phased Array Microphone Studies on Basic Models of Low-Speed Axial Fan Blade Sections
.”
ASME
Paper No. GT2018-75778
.
24.
Bian
,
T.
,
Shen
,
X.
,
Wang
,
B.
,
Feng
,
J.
, and
Han
,
Q.
,
2019
, “
Numerical and Experimental Investigation of Flow Loss and Flow Structure of Circular Arc Cambered Plate Blade Cascade
,”
Proc. Inst. Mech. Eng.—Part A: J. Power Energy
,
233
(
8
), pp.
961
973
.
25.
Hathaway
,
M.
,
Gertz
,
J.
,
Epstein
,
A.
, and
Strazisar
,
A.
,
1985
, “
Rotor Wake Characteristics of a Transonic Axial Flow Fan
,”
AIAA J.
,
24
(
11
), pp.
1802
1810
.
26.
Damodaran
,
M.
, and
Caughey
,
D.
,
1988
, “
Finite-Volume Calculation of Inviscid Transonic Airfoil-Vortex Interaction
,”
AIAA J.
,
26
(
11
), pp.
1346
1353
.
27.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on Kármán Vortex Shedding and Induced Hydrofoil Vibrations
,”
Trans ASME, J. Fluids Eng.
,
129
(
8
), pp.
966
973
.
28.
Bhagwat
,
M. J.
, and
Leishman
,
J. G.
,
2002
, “
Generalized Viscous Vortex Model for Application to Free-Vortex Wake and Aeroacoustic Calculations
,”
Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International
,
Montréal, Canada
,
June 11–13
, pp. 2042–2057
.
29.
Gausz
,
T.
,
2003
, “
Blade Vortex Interaction Problem at Helicopter Rotors
,”
Proceedings of the Conference on Modelling Fluid Flow (CMFF’03)
,
Budapest, Hungary
,
Sept. 3–6
, p.
6
.
30.
Hersh
,
A. S.
,
Sodermant
,
P. T.
, and
Hayden
,
R. E.
,
1974
, “
Investigation of Acoustic Effects of Leading-Edge Serrations on Airfoils
,”
J. Aircr.
,
11
(
4
), pp.
197
202
.
31.
Balla
,
E.
,
2020
, “
Aerodynamic and Aeroacoustic Behavior of Axial Fan Blade Sections at Low Reynolds Numbers
,”
Ph.D. thesis
,
Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics
.
32.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
33.
Vad
,
J.
,
2012
, “
Incorporation of Forward Blade Sweep in Preliminary Controlled Vortex Design of Axial Flow Rotors
,”
Proc. Inst. Mech. Eng.—Part A: J. Power Energy
,
226
(
A4
), pp.
462
478
.
34.
Tóth
,
B.
, and
Vad
,
J.
,
2017
, “
Algorithmic Localisation of Noise Sources in the Tip Region of a Low-Speed Axial Flow Fan
,”
J. Sound Vib.
,
313
, pp.
425
441
.
35.
Balla
,
E.
, and
Vad
,
J.
,
2017
, “
Establishment of a Beamforming Dataset on Basic Models of Low-Speed Axial Fan Blade Sections
,”
Period. Polytech., Mech. Eng.
,
61
(
2
), pp.
122
129
.
36.
Tóth
,
B.
,
Vad
,
J.
, and
Kotán
,
G.
,
2018
, “
Comparison of the Rotating Source Identifier and the Virtual Rotating Array Method
,”
Period. Polytech., Mech. Eng.
,
62
(
4
), pp.
261
268
.
You do not currently have access to this content.