Abstract

Matrix or latticework cooling has become a new area of research due to its advantage of providing a structural rigidity to the fragile structures like gas turbine blades, electronic components or circuitries, and compact heat exchangers. In this article, the heat transfer characteristics in matrix cooling channels with different rib angles have been studied using liquid crystal thermography. A total of three matrix models with rib angles 35 deg, 45 deg, and 55 deg having a common subchannel aspect ratio 0.8 have been studied. The results are evaluated in terms of local and average augmentation Nusselt numbers for different regions of the matrix. The augmentation Nusselt number has been found to increase in each region as the angle increases from 35 deg to 45 deg and the same has been found to decrease slightly upon the further increase in angle from 45 deg to 55 deg. The highest percentage increase in augmentation Nusselt number up to 50% has been observed in entry region, whereas the same remained nearly 26–30% in middle and exit regions in streamwise directions, i.e., the effect of the matrix rib angle is more prominent in the entry region. The higher resistance offered by the greater number of ribs for angle 55 deg is believed to be responsible for the decrease in augmentation Nusselt number for Re ≤ 9000.

References

1.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
,
1990
, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
AIAA ISAEI ASME IASEE—26th Joint Propulsion Conference
,
Orlando, FL
,
July 16–18
,
Paper No. AIAA-90-2144
.
2.
Gillespie
,
D. R. H.
, and
Ireland
,
P. T.
,
2000
, “
Detailed Flow and Heat Transfer Coefficient Measurement in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
Proceedings of ASME TURBOEXPO 2000
,
Munich, Germany
,
ASME Paper No. 2000-GT-653
.
3.
Bunker
,
R. S.
,
2004
, “
Lattice Work (Vortex) Cooling Effectiveness Part 1: Stationary Channel Experiments
,”
Proceedings of ASME Turbo Expo 2004, Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
,
Paper No. GT2004-54157
.
4.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air GT2008
,
Berlin, Germany
,
June 9–13
,
Paper No. GT2008-51324
.
5.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Drop in a Converging Lattice Structure for Airfoil Trailing Edge Cooling
,”
Proceedings of IMECE 2008, ASME International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Paper No. IMECE2008-68152
.
6.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness Part 2: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
. 10.1115/1.1860381
7.
Oh
,
I. T.
,
Kyung
,
M. K.
,
Dong
,
H. L.
,
Jun
,
S. P.
, and
Hyung
,
H. C.
,
2012
, “
Local Heat and Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
J. Heat Trans.
,
134
, pp.
1
9
. 10.1115/gt2009-59873
8.
Rao
,
Y.
, and
Zang
,
S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
, pp.
1
10
. 10.1115/1.4025197
9.
Reddy
,
S. R.
,
Siddappa
,
P. G.
,
Kesavan
,
V.
, and
Kumar
,
S. K.
,
2014
, “
Computational Study of Flow and Heat Transfer in Matrix Cooling Channels
,”
Proceedings of ASME 2014, Gas Turbine India Conference GT2014
,
New Delhi, India
,
Dec. 15–17
,
Paper No. GT2014-8252
.
10.
Caracasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2014
, “
Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
136
, pp.
1
8
. 10.1115/1.4028237
11.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Huannan
,
L.
, and
Haiou
,
S.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
, pp.
75
86
. 10.1016/j.applthermaleng.2016.08.005
12.
Deng
,
H.
,
Wang
,
K.
,
Zhu
,
J.
, and
Pan
,
W.
,
2013
, “
Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels
,”
J. Therm. Sci.
,
22
(
3
), pp.
250
256
. 10.1007/s11630-013-0620-3
13.
Bu
,
S.
,
Yang
,
L.
,
Qiu
,
H.
,
Luan
,
Y.
, and
Sun
,
H.
,
2017
, “
Effect of Sidewall Slots and Pin Fins on the Performance of Latticework Cooling Channel for Turbine Blades
,”
Appl. Therm. Eng.
,
117
, pp.
275
288
. 10.1016/j.applthermaleng.2017.01.110
14.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2018
, “
Thermal Visualization and Performance Evaluation of the Open Matrix Structures Using Liquid Crystal Thermography
,”
J. Flow Visualization Image Process.
,
25
(
3–4
), pp.
277
295
. 10.1615/JFlowVisImageProc.2018027508
15.
Choi
,
S. M.
,
Bang
,
M.
,
Kim
,
S. Y.
,
Lee
,
H.
,
Joo
,
W. G.
, and
Cho
,
H. H.
,
2017
, “
Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel
,”
Int. J. Mech. Mechatr. Eng.
,
World Academy of Science, Engineering and Technology
,
11
(
12
), pp.
1906
1910
.
16.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2019
, “
A Comparative Study of Heat Transfer Characteristics and Pressure Drop in Matrix Structures
,”
Proceedings of ASME 2019, Gas Turbine India Conference GT2019
,
Chennai, India
,
Dec. 5–6
,
Paper No. GT2019-2550
.
17.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2019
, “
Detailed Heat Transfer Characteristics of Matrix Cooling Channels With Rib Angle 35o Using Liquid Crystal Thermography
,”
Proceedings of ASME 2019, Gas Turbine India Conference GT2019
,
Chennai, India
,
Dec. 5–6
,
Paper No. GT2019-2551
.
18.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor and Francis
,
New York
.
19.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
. 10.1088/0957-0233/11/7/312
20.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
. 10.1088/0957-0233/11/7/313
21.
Tariq
,
A.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2004
, “
Flow and Heat Transfer in the Wake of a Surface-Mounted Rib With a Slit
,”
Exper. Fluids
,
37
(
5
), pp.
701
719
. 10.1007/s00348-004-0861-8
22.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2013
, “
Flow and Heat Transfer Investigation Behind Trapezoidal Rib Using PIV and LCT Measurements
,”
Exper. Fluids
,
54
(
5
), p.
1520
. 10.1007/s00348-013-1520-8
23.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2016
, “
Role of Chamfering Angles and Flow Through Slit on Heat Transfer Augmentation Behind a Surface-Mounted Rib
,”
J. Heat Trans.
,
138
(
11
), pp.
1
16
. 10.1115/1.4033747
24.
Tariq
,
A.
,
Sharma
,
N.
, and
Mishra
,
M.
,
2018
, “
Aerothermal Characteristics of Solid and Permeable Pentagonal Rib Turbulators
,”
J. Heat Trans.
,
140
(
6
), pp.
1
14
. 10.1115/1.4039398
25.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2018
, “
Detailed Heat Transfer and Fluid Flow Investigation in a Rectangular Duct With Truncated Prismatic Ribs
,”
Exp. Therm. Fluid. Sci.
,
96
, pp.
383
396
. 10.1016/j.expthermflusci.2018.03.029
26.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
,
Schultz, D. L., and T. V. Jones. 1973. Heat-Transfer Measurements in Short-Duration Hypersonic Facilities. Neuilly-sur-Seine: NATO AGARD
.
27.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
S. O.
,
1998
, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystals Technique
,”
Exp. Therm. Fluid. Sci.
,
18
(
2
), pp.
142
149
. 10.1016/S0894-1777(98)10016-X
28.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw–Hill
,
New York
.
29.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transf.
,
6
, pp.
503
564
. 10.1016/S0065-2717(08)70153-9
30.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Publications on Engineering, 2
,
University of California at Berkeley
,
Berkeley, CA
, p.
443
.
31.
Maekawa
,
I.
, and
Nakaoji
,
M.
,
1993
, “
A Study on the Decay Heat Removal Capability of a Reactor Vessel Auxiliary Cooling System
,”
IAEA-IWGFR Specialists' Meeting on Evaluation of Decay Heat Removal by Natural Convection
,
Oarai, Ibaraki, Japan
,
Feb. 22–23
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.