Abstract

The blade clearance in aero-engine compressors is mainly controlled by the radial growth of the compressor discs, to which the blades are attached. This growth depends on the radial distribution of the disc temperature, which in turn is determined by the heat transfer inside the internal rotating cavity between adjacent discs. The buoyancy-induced convection inside the cavity is significantly weaker than that associated with the forced convection in the external mainstream flow, and consequently radiation between the cavity surfaces cannot be ignored in the calculation of the disc temperatures. In this paper, both the Monte Carlo Ray-Trace (MCRT) method and the view factor (VF) method are used to calculate the radiative flux when the temperatures of the discs, shroud, and inner shaft of the compressor vary radially and axially. The Monte Carlo Ray-Trace method is computationally expensive, but it is able to incorporate the effect of complex geometries on radiation. The view factor method is quick to compute and, although the derivation becomes complicated when geometrical details are considered, it can be used as a first check of the effect of radiation in compressor cavities. Given distributions of surface temperatures, the blackbody and gray body heat fluxes were calculated for the discs, shroud, and inner shaft in two experimental compressor rigs and in a simulated compressor stage. For the experimental rigs, although the effect of radiation was relatively small for the case of large Grashof numbers, the relative effect of radiation increases as Gr (and consequently the convective heat transfer) decreases. For the simulated compressor, with a pressure ratio of 50:1 for state-of-the-art aircraft engines, radiation could have a significant effect on the disc temperature and consequently on the blade clearance; the effect is predicted to be more prominent for the next generation of aircraft engines with pressure ratios up to 70:1.

References

1.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
. 10.1115/1.4031039
2.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
. 10.1115/1.2835635
3.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME Paper 2000-GT-0280
.
4.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME Paper GT2014-27174
.
5.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate usselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
. 10.1115/1.4031355
6.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME Paper GT2020-14427
.
7.
Owen
,
J. M.
, and
Tang
,
H.
,
2015
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111005
. 10.1115/1.4031353
8.
Luberti
,
D.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Influence of Temperature Distribution on Radial Growth of Compressor Disks
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
071004
. 10.1115/1.4046704
9.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
ASME Paper GT2014-26228
.
10.
Long
,
C. A.
,
Morse
,
A. P.
, and
Tucker
,
P. G.
,
1997
, “
Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow
,”
ASME J. Turbomach.
,
119
(
1
), pp.
51
60
. 10.1115/1.2841010
11.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
. 10.1016/j.ijheatfluidflow.2007.04.009
12.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Introduction to Heat Transfer
,
John Wiley
,
New York
.
13.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Elsevier
,
New York
.
14.
Howell
,
J. R.
, and
Mengüç
,
M. P.
,
2011
, “
Radiative Transfer Configuration Factor Catalog: A Listing of Relations for Common Geometries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
5
), pp.
910
912
. 10.1016/j.jqsrt.2010.10.002
15.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
120
(
8
), pp.
547
560
. 10.1115/1.2824310
16.
Morokoff
,
W. J.
, and
Caflisch
,
R. E.
,
1995
, “
Quasi-Monte Carlo Integration
,”
J. Comput. Phys.
,
122
(
2
), pp.
218
230
. 10.1006/jcph.1995.1209
17.
Palluotto
,
L.
,
Dumont
,
N.
,
Rodrigues
,
P.
,
Gicquel
,
O.
, and
Vicquelin
,
R.
,
2019
, “
Assessment of Randomized Quasi-Monte Carlo Method Efficiency in Radiative Heat Transfer Simulations
,”
J. Quant. Spectrosc. Radiat. Transfer
,
236
(
7
), p.
106570
. 10.1016/j.jqsrt.2019.07.013
18.
ANSYS
,
2020
,
ANSYS CFX 2020 R2 CFX-Solver Modelling Guide
, Manual,
ANSYS, Inc
.
19.
Colomer
,
G.
,
Costa
,
M.
,
Consul
,
R.
, and
Oliva
,
A.
,
2004
, “
Three-Dimensional Numerical Simulation of Convection and Radiation in a Differentially Heated Cavity Using the Discrete Ordinates Method
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
257
269
. 10.1016/S0017-9310(03)00387-9
20.
Soucasse
,
L.
,
Rivière
,
P.
,
Soufiani
,
A.
,
Xin
,
S.
, and
Le Quéré
,
P.
,
2014
, “
Transitional Regimes of Natural Convection in a Differentially Heated Cubical Cavity Under the Effects of Wall and Molecular Gas Radiation
,”
Phys. Fluids
,
26
(
2
), p.
024105
. 10.1063/1.4864265
21.
Tang
,
H.
, and
Owen
,
J. M.
,
2017
, “
Effect of Buoyancy-Induced Rotating Flow on Temperatures of Compressor Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062506
. 10.1115/1.4035400
22.
CIBSE
,
2015
,
Environmental Design—CIBSE Guide A (8th Edition)
,
CIBSE
,
London, UK
.
23.
Greene
,
G. A.
,
Finfrock
,
C. C.
, and
Irvine
,
T. F.
, Jr.
,
2000
, “
Total Hemispherical Emissivity of Oxidized Inconel 718 in the Temperature Range 300–1000 C
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
145
153
. 10.1016/S0894-1777(00)00021-2
24.
Keller
,
B. P.
,
Nelson
,
S. E.
,
Walton
,
K. L.
,
Ghosh
,
T. K.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
,
2015
, “
Total Hemispherical Emissivity of Inconel 718
,”
Nucl. Eng. Des.
,
287
(
2
), pp.
11
18
. 10.1016/j.nucengdes.2015.02.018
You do not currently have access to this content.