Abstract

This study includes the design, validation, and fabrication via direct metal laser sintering (DMLS) of a gas turbine nozzle guide vanes (NGV) that incorporates three innovative cooling schemes specifically enabled by additive manufacturing. The novel NGV design is the culmination of an extensive research and development effort over a period of 4 years that included low- and high-speed cascade testing coupled with unsteady computational fluid dynamics for numerous candidate innovative cooling architectures. The final vane design (SJ-vane) consists of sweeping jet (SJ) film cooling holes on the suction surface (SS), sweeping jet impingement holes at the leading edge and double-wall partial length triangular pin-fin with impinging jet at the trailing edge. For comparison purposes, a second DMLS enabled vane (777-vane) was designed and fabricated with prototypical cooling circuits to serve as a baseline. This vane consists of a shaped film cooling holes on the suction surface, circular impingement holes at the leading edge, and full-length cylindrical pin-fins at the trailing edge. Experiments with the two DMLS enabled vanes were performed at the Ohio State University Turbine Reacting Flow Rig (TuRFR) at engine-relevant temperature (1375 K) and Mach number conditions. Infrared (IR) thermography was utilized to measure the wall temperature of the pressure and suction surface at several coolant mass flowrates to estimate the overall cooling effectiveness (ϕ). Results showed improved cooling performance for the advanced cooling schemes (sweeping jet film cooling, impingement cooling, and triangular pin-fin cooling) compared with the baseline cooling schemes.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press-Taylor & Francis Group
,
Boca Raton, FL
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Prop. Power
,
22
(
2
), pp.
249
270
. 10.2514/1.18034
3.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking The Limits of Diffusion Shaped Holes
,”
J. Heat Trans. Res.
,
41
(
6
), pp.
627
650
. 10.1615/HeatTransRes.v41.i6.40
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transf.
,
17
(
1974
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
5.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometric Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
. 10.1115/1.4006290
6.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
. 10.1115/1.2927678
7.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
A.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
. 10.1115/1.1515336
8.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
. 10.1115/1.4003726
9.
Lu
,
Y.
,
Faucheaux
,
D.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling Measurements for Novel Hole Configurations
,”
ASME Paper No. HT2005-72396
.
10.
Heidmann
,
J. D.
, and
Ekkad
,
S. V.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
. 10.1115/1.2777194
11.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo
,
GT2014-25992
.
12.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
. 10.1115/1.4032839
13.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
. 10.1115/1.4038690
14.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
. 10.1115/1.2927680
15.
Taslim
,
M. E.
,
Setayashgar
,
L.
, and
Spring
,
S. D.
,
2000
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
. 10.1115/1.1331537
16.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
. 10.1016/0142-727X(92)90017-4
17.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
. 10.1016/S0065-2717(06)39006-5
18.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
770
782
. 10.1115/1.1471521
19.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
The Time-Resolved Flow Field of a Jet Emitted by a Fluidic Oscillator Into a Crossflow
,”
54th AIAA Aerospace Sciences Meeting and Exhibit
,
Jan. 2016
,
AIAA 2015-0345
.
20.
Agricola
,
L. M.
,
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
, “
Impinging Sweeping Jet Heat Transfer
,”
53th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2017
,
Paper number: AIAA 2017-4974
.
21.
Agricola
,
L. M.
,
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
, “
Turbine Vane Leading Edge Impingement Cooling With a Sweeping Jet
,”
ASME Turbo Expo 2018
,
GT2018-77073
.
22.
Chyu
,
M. K.
, and
Siw
,
S. C.
,
2013
, “
Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
, p.
021008
. 10.1115/1.4023829
23.
Metzger
,
D. E.
, and
Haley
,
S. W.
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,”
Proceedings of the ASME 1982 International Gas Turbine Conference and Exhibit. Volume 4: Heat Transfer; Electric Power
,
London, England
,
Apr. 18–22, 1982
.
24.
Ferster
,
K.
,
Kirsch
,
K.
, and
Thole
,
K.
,
2017
, “
Effects of Geometry, Spacing, and Number of Pin Fins in Additively Manufactured Microchannel Pin Fin Arrays
,”
ASME J. Turbomach.
,
140
(
1
), p.
011007
. 10.1115/1.4038179
25.
Sparrow
,
E.
, and
Ramsey
,
J.
,
1978
, “
Heat Transfer and Pressure Drop for Staggered Wall-Attached Array of Cylinders With Tip Clearance
,”
Int. J. Heat Mass Transf.
,
21
(
11
), pp.
1369
1378
. 10.1016/0017-9310(78)90200-4
26.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transf.
,
75
, pp.
58
74
. 10.1016/j.ijheatmasstransfer.2014.03.037
27.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2016
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
. 10.1115/1.4034342
28.
Snyder
,
J. C.
, and
Thole
,
K. A.
, “
Performance of Public Film Cooling Geometries Produced Through Additive Manufacturing
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Phoenix, AZ
,
June 17–21, 2019
, V05BT21A003.
29.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2019
, “
Sweeping Jet Film Cooling on a Turbine Vane
,”
ASME J. Turbomach.
,
141
(
3
), p.
031007
. 10.1115/1.4042070
30.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2019
, “
Sweeping Jet Film Cooling at High Blowing Ratio on a Turbine Vane
,”
ASME Paper No: GT2019-91696
.
31.
Hossain
,
M. A.
,
Asar
,
M. E.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2019
, “
Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade
,”
ASME Paper No: 2019-91678
.
32.
Lundgreen
,
R. K.
,
Hossain
,
M. A.
,
Prenter
,
R.
,
Bons
,
J. P.
,
Gregory
,
J.
, and
Ameri
,
A.
,
2017
, “
Impingement Heat Transfer Characteristics of Sweeping Jet
,”
55th AIAA Aerospace Sciences Meeting
,
TX
,
AIAA 2017-1535
.
33.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2018
, “
Effects of Curvature on the Performance of
,”
55th AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
.
34.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2018
, “
Effects of Exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement
,”
2018 International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum
,
Cincinnati, OH
(AIAA 2018-4886)
.
35.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Impingement Cooling on a Simulated Turbine Vane Leading Edge
,”
Global Power Propul. J.
,
2
, pp.
402
414
,
GPPS2018-0148
.
36.
Nirmalan
,
N. V.
,
Bunker
,
R. S.
, and
Hedlund
,
C. R.
,
2003
, “
The Measurement of Full-Surface Internal Heat Transfer Coefficients for Turbine Airfoils Using a Nondestructive Thermal Inertia Technique
,”
ASME J. Turbomach.
,
125
(
1
), pp.
83
89
. 10.1115/1.1515798
37.
Hossain
,
M. A.
,
Asar
,
M. E.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2020
, “
Conjugate Heat Transfer Study of Innovative Pin-Fin Cooling Configuration
,”
AIAA Aerospace Sciences Meeting
,
FL
,
AIAA 2020-0634
.
38.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2017
, “
Effect of Roughness on the Performance of Fluidic Oscillator
,”
55th AIAA Aerospace Sciences Meeting
,
Texas
,
Paper number: AIAA 2017-0770
.
39.
Rutledge
,
J. L.
, and
Baker
,
W. P.
,
2019
, “
Unsteady Effects on the Experimental Determination of Overall Effectiveness
,”
ASME J. Turbomach.
,
140
(
12
), p.
121005
. 10.1115/1.4041233
40.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
. 10.1115/1.1459736
41.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 5A: Heat Transfer
,
Seoul, South Korea
,
June 13–17
,
V05AT13A021
.
42.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
. 10.1115/1.2841752
43.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effects of Coolant Feed Direction on Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
11
), p.
111001
. 10.1115/1.4041374
You do not currently have access to this content.