Abstract

Arrays of staggered pin fins are a typical geometry found in the trailing edge region of modern airfoils. If coolant is supplied by bleeding from the mid-section of the airfoil instead of provided through the root, the channel length is insufficiently long to reach a fully developed flow which is commonly found from the fifth row downstream. This present study focuses on the developing section (four rows) of a staggered array with a height-to-diameter ratio of 2 and a spanwise and streamwise spacing of 2.5, respectively. Measurements are conducted at Reynolds numbers of 10,000 and 30,000 based on the maximum velocity and pin diameter. Stereoscopic particle image velocimetry (PIV) is used to describe the flow field and turbulence characteristics in the wake of the first and third row pin. It is found that the dominating vortical structures depend highly on the Reynolds number. A transient thermochromic liquid crystal (TLC) technique is used to obtain local heat transfer coefficients on the endwall which are then discussed in the context with the vortical structures. The structure of the horseshoe vortex and the transient wake shedding behaves differently in the first and third row. The interaction of both vortex systems affects directly the endwall heat transfer. The results are supplemented by a thorough discussion of TLC and PIV uncertainty.

References

1.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
. 10.1016/S0065-2717(08)70038-8
2.
Vanfossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
(
2
), pp.
268
274
. 10.1115/1.3227275
3.
Brigham
,
B. A.
, and
Vanfossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat-Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
245
. 10.1115/1.3239541
4.
Simoneau
,
R.
, and
VanFossen
,
G.
,
1984
, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
42
48
. 10.1115/1.3246657
5.
Metzger
,
D.
,
Fan
,
C.
, and
Haley
,
S.
,
1984
, “
Effects of pin Shape and Array Orientation on Heat Transfer and Pressure Loss in pin fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
. 10.1115/1.3239545
6.
Metzger
,
D.
,
Shepard
,
W.
, and
Haley
,
S.
, “
Row Resolved Heat Transfer Variations in
Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibition
,
Dusseldorf, Germany
,
June 8–12
, p.
V004T009A015
.
7.
Chyu
,
M.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Threedimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2925
2935
. 10.1016/0017-9310(95)00381-9
8.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
9.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
458
471
. 10.1115/1.1860563
10.
Gupta
,
G.
,
Fernandez
,
E.
,
Otto
,
M.
, and
Kapat
,
J. S.
, “
Experimental and Numerical Investigation of Fully Turbulent Flow in a Rectangular Channel With Dimples and Protrusions
,”
Proceedings of the AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
,
AIAA
, p.
4178
.
11.
Otto
,
M.
,
Fernandez
,
E.
,
Kapat
,
J. S.
,
Ricklick
,
M.
, and
Mhetras
,
S.
, “
Rib Turbulated Pin Fin Array for Trailing Edge Cooling
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–27
,
ASME
, p.
V05AT16A001
.
12.
Otto
,
M.
,
Hodges
,
J.
,
Ricklick
,
M. A.
, and
Kapat
,
J. S.
,
2015
, “
Combination of Ribs and Pins for Internal Cooling
,”
Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
,
AIAA
, p.
3735
.
13.
Chyu
,
M. K.
, and
Goldstein
,
R. J.
,
1991
, “
Influence of an Array of Wall-Mounted Cylinders on the Mass-Transfer From a Flat Surface
,”
Int. J. Heat Mass Transfer
,
34
(
9
), pp.
2175
2186
. 10.1016/0017-9310(91)90044-F
14.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in pin-fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
. 10.1115/1.2841309
15.
Ames
,
F. E.
,
Nordquist
,
C. A.
, and
Klennert
,
L. A.
,
2007
, “
Endwall Heat Transfer Measurements in a Staggered pin fin Array with an Adiabatic pin
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Quebec, Canada
,
May 14–17
, pp.
423
432
.
16.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple row Arrays of low Aspect Ratio pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4099
4109
. 10.1016/j.ijheatmasstransfer.2011.04.001
17.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection Over Pins in Staggered-pin fin Arrays
,”
ASME J. Turbomach.
,
127
(
1
), pp.
183
190
. 10.1115/1.1811090
18.
Ames
,
F. E.
, and
Dvorak
,
L. A.
,
2006
, “
Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions
,”
ASME J. Turbomach.
,
128
(
1
), pp.
71
81
. 10.1115/1.2098792
19.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Elliptical Pin Fins as an Alternative to Circular Pin Fins for Gas Turbine Blade Cooling Applications: Part 2—Wake Flow Field Measurements and Visualization Using Particle Image Velocimetry
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
, p.
V003T001A057
.
20.
Otto
,
M.
,
Hodges
,
J.
,
Gupta
,
G.
, and
Kapat
,
J. S.
,
2019
, “
Vortical Structures in Pin Fin Arrays for Turbine Cooling Applications
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
.
21.
Anderson
,
C. D.
, and
Lynch
,
S. P.
,
2016
, “
Time-resolved Stereo PIV Measurements of the Horseshoe Vortex System at Multiple Locations in a low-Aspect-Ratio pin–fin Array
,”
Exp. Fluids
,
57
(
1
), pp.
1
18
. 10.1007/s00348-015-2091-7
22.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
. 10.1115/1.2185676
23.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part II: Time-Mean Results
,”
ASME J. Turbomach.
,
128
(
4
), pp.
755
762
. 10.1115/1.2185677
24.
Blevins
,
R. D.
,
1977
,
Flow-induced Vibration
,
Van Nostrand Reinhold Co
,
New York, USA
.
25.
Ghosh
,
S.
,
Mondal
,
S.
,
Kapat
,
J. S.
, and
Ray
,
A.
,
2020
, “
Parametric Shape Optimization of Pin-Fin Arrays Using a Surrogate Model Based Bayesian Method
,”
J. Thermophys. Heat Transfer
, pp.
1
11
. 10.2514/1.T6094
26.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
27.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
29.
Wieneke
,
B. J.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
. 10.1088/0957-0233/26/7/074002
30.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Wake Development in Staggered Short Cylinder Arrays Within a Channel
,”
Exp. Fluids
,
53
(
3
), pp.
673
697
. 10.1007/s00348-012-1313-5
31.
Tran
,
P. K.
,
Fernandez
,
E.
, and
Kapat
,
J. S.
,
2019
, “
Investigation of Unsteady Flow Structures in a Rectangular Channel with Pin Fin Array
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4179
.
You do not currently have access to this content.