Abstract

This work presents the results of a numerical analysis performed on a gas turbine leading edge cooling system. The investigation was carried out in order to provide a detailed interpretation of the outcomes of a parallel experimental campaign. The cooling geometry consists of a cold bridge-type impingement system: a radial channel feeds an array of holes, which in turn generate impingement jets cooling down the inner side of the leading edge surface. Coolant is extracted by five rows of holes, replicating film cooling and showerhead systems. Two impingement geometries were considered, presenting different holes arrangements and diameters but sharing the same overall passage area, in order to highlight the effect of different coolant distributions inside the leading edge cavity.

For both geometries, a single test point was investigated in static and rotating conditions, with an equivalent slot Reynolds number of around 8200 and feeding conditions corresponding to the midspan radial section of the blade. Both steady Reynolds averaged Navier Stokes (RANS) approach and scale adaptive simulation (SAS) were tested. Due to the strong unsteadiness of the flow field, the latter proved to be superior: as a consequence, the SAS approach was adopted to study every case. A fairly good agreement was observed between the measured and computed heat transfer distributions, which allowed to exploit the numerical results to get a detailed description of the phenomena associated with the different cases. Results reveal that the two holes arrangements lead to strongly different heat transfer patterns, related to the specific flow phenomena occurring inside the leading edge cavity and to the mutual influence of the various system features. Rotational effects also appear to interact with the supply condition, altering the jet lateral spreading and the overall heat transfer performance.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Gau
,
C.
, and
Chung
,
C.
,
1991
, “
Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
858
864
10.1115/1.2911214
3.
Bunker
,
R.
, and
Metzger
,
D.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
10.1115/1.2927680
4.
Harmon
,
W.
,
Wright
,
L.
,
Crites
,
D.
,
Morris
,
M.
, and
Riahi
,
A.
,
2015
, “
Combined Effects of Jet Plate Thickness and Fillet Radius on Leading Edge Jet Impingement With Round and Racetrack Shaped Jets
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, No GT2015-43505
,
Montreal, Canada
,
American Society of Mechanical Engineers
, p.
V05AT11A032
.
5.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2013
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
. 10.1115/1.4007527
6.
Massini
,
D.
,
Burberi
,
E.
,
Carcasci
,
C.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Armellini
,
A.
,
Casarsa
,
L.
, and
Furlani
,
L.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101902
10.1115/1.4036576
7.
Jordan
,
C.
,
Wright
,
L.
, and
Crites
,
D.
,
2012
, “
Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets
,”
ASME 2012 Heat Transfer Summer Conference Collocated With the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
,
Rio Grande, PR
,
American Society of Mechanical Engineers
, pp.
841
850
.
8.
Taslim
,
M.
,
Setayeshgar
,
L.
, and
Spring
,
S.
,
2000
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
10.1115/1.1331537
9.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Ohlendorf
,
N.
,
2013
, “
Experimental Investigation on the Heat Transfer of a Leading Edge Cooling System: Effects of Jet-to-Jet Spacing and Showerhead Extraction
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, No. GT2013-94759
,
San Antonio, TX
,
American Society of Mechanical Engineers
, p.
V03AT12A026
.
10.
Cocchi
,
L.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Heat Transfer Measurements in Leading-Edge Cooling Geometry Under Rotating Conditions
,”
J. Thermophys. Heat Transfer
,
33
(
3
), pp.
844
855
. 10.2514/1.T5618
11.
Hong
,
S.
,
Lee
,
D.
, and
Cho
,
H.
,
2009
, “
Effect of Jet Direction on Heat/Mass Transfer of Rotating Impingement Jet
,”
Appl. Thermal Eng.
,
29
(
14–15
), pp.
2914
2920
. 10.1016/j.applthermaleng.2009.02.014
12.
Deng
,
H.
,
Gu
,
Z.
,
Zhu
,
J.
, and
Tao
,
Z.
,
2012
, “
Experiments on Impingement Heat Transfer With Film Extraction Flow on the Leading Edge of Rotating Blades
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5425
5435
. 10.1016/j.ijheatmasstransfer.2012.04.051
13.
Polat
,
S.
,
Mujumdar
,
A.
, and
Douglas
,
W.
,
1985
, “
Heat Transfer Distribution Under a Turbulent Impinging Jet—A Numerical Study
,”
Drying Technol.
,
3
(
1
), pp.
15
38
. 10.1080/07373938508916253
14.
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
,
1996
, “
Numerical Prediction of Semi-Confined Jet Impingement and Comparison With Experimental Data
,”
Int. J. Numer. Methods Fluids
,
23
(
3
), pp.
295
306
. 10.1002/(sici)1097-0363(19960815)23:3
15.
Coussirat
,
M.
,
Van Beeck
,
J.
,
Mestres
,
M.
,
Egusquiza
,
E.
,
Buchlin
,
J.-M.
, and
Valero
,
C.
,
2005
, “
Computational Fluid Dynamics Modeling of Impinging Gas-Jet Systems: II. Application to an Industrial Cooling System Device
,”
J. Fluid Eng.
,
127
(
4
), pp.
704
713
. 10.1115/1.1949635
16.
Kumar
,
B.
, and
Prasad
,
B.
,
2008
, “
Computational Flow and Heat Transfer of a Row of Circular Jets Impinging on a Concave Surface
,”
Heat Mass Transfer
,
44
(
6
), pp.
667
678
. 10.1007/s00231-007-0274-3
17.
Taslim
,
M.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
10.1115/1.1624848
18.
Jordan
,
C.
,
Elston
,
C.
,
Wright
,
L.
, and
Crites
,
D.
,
2013
, “
Leading Edge Impingement With Racetrack Shaped Jets and Varying Inlet Supply Conditions
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, No GT2013-94611
,
San Antonio, TX
,
American Society of Mechanical Engineers
, p.
V03AT12A020
.
19.
Souris
,
N.
,
Liakos
,
H.
, and
Founti
,
M.
,
2004
, “
Impinging Jet Cooling on Concave Surfaces
,”
AIChE J.
,
50
(
8
), pp.
1672
1683
10.1002/aic.10171
20.
Burberi
,
E.
,
Massini
,
D.
,
Cocchi
,
L.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Numerical Investigation
,”
ASME J. Turbomach.
,
139
(
3
), p.
031005
. 10.1115/1.4034799
21.
Cocchi
,
L.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Effect of Rotation and Hole Arrangement in Cold Bridge-Type Impingement Cooling Systems
,”
Int. J. Turbomach. Propulsion Power
,
4
(
2
), p.
13
. 10.3390/ijtpp4020013
22.
ASME
,
1985
, “
Measurement Uncertainty. Part 1: Instrument and Apparatus
,”
Performance Test Code
,
ANSI/ASME PTC 19.1-1985
.
23.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
24.
Celik
,
I.
,
Cehreli
,
Z.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
J. Fluid Eng.
,
127
(
5
), pp.
949
958
. 10.1115/1.1990201
25.
Jenkins
,
S. C.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2012
, “
Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments
,”
ASME J. Turbomach.
,
134
(
3
), p.
031002
. 10.1115/1.3106028
26.
Menter
,
F.
, and
Egorov
,
Y.
,
2006
, “
Revisiting the Turbulent Scale Equation
,”
Solid Mech. Appl.
,
129
(
1
), pp.
279
290
.
27.
Menter
,
F.
, and
Egorov
,
Y.
,
2005
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, p.
1095
.
28.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbulence Combust.
,
85
(
1
), pp.
113
138
. 10.1007/s10494-010-9264-5
29.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
. 10.1088/1367-2630/6/1/035
30.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
. 10.1115/1.1397306
31.
Cho
,
H.
, and
Rhee
,
D.
,
2000
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingment/Effusion Cooling System
,”
ASME J. Turbomach
,
123
(
3
), pp.
601
608
. 10.1115/1.1344904
32.
Martin
,
H.
,
1977
, “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,”
Advances in Heat Transfer
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds., Vol.
13
,
Elsevier
,
New York
, pp.
1
60
.
33.
Bunker
,
R.
,
2008
,
Innovative Gas Turbine Cooling Techniques
,
WIT Press
,
Southampton, UK
.
You do not currently have access to this content.