The flow at the combustor turbine interface of power generation gas turbines with can combustors is characterized by high and nonuniform turbulence levels, lengthscales, and residual swirl. These complexities have a significant impact on the first vanes aerothermal performance and lead to challenges for an effective turbine design. To date, this design philosophy mostly assumed steady flow and thus largely disregards the intrinsic unsteadiness. This paper investigates the steady and unsteady effects of the combustor flow with swirl on the turbines first vanes. Experimental measurements are conducted on a high-speed linear cascade that comprises two can combustors and four nozzle guide vanes (NGVs). The experimental results are supported by a large eddy simulation (LES) performed with the inhouse computational fluid dynamics (CFD) flow solver TBLOCK. The study reveals the highly unsteady nature of the flow in the first vane and its effect on the heat transfer. A persistent flow structure of concentrated vorticity is observed. It wraps around the unshielded vane's leading edge (LE) at midspan and periodically oscillates in spanwise direction due to the interaction of the residual low-pressure swirl core and the vane's potential field. Moreover, the transient behavior of the horseshoe-vortex system due to large fluctuations in incidence is demonstrated.

References

1.
Lazik
,
W.
,
Doerr
,
T.
,
Bake
,
S.
,
Bank
,
R.
, and
Rackwitz
,
L.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
3.
Lefebvre
,
A.
,
1999
,
Gas Turbine Combustion
(Combustion: An International Series),
Taylor & Francis
, Philadelphia, PA.
4.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
, and
Okulov
,
V. L.
,
2007
,
Theory of Concentrated Vortices
,
Springer
,
Berlin
, pp.
309
378
.
5.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(8), p.
136988
.
6.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
PECS
,
32
(
2
), pp.
93
161
.
7.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
8.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.
9.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
10.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
11.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
,
2003
, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
221
231
.
12.
Salvadori
,
S.
,
Riccio
,
G.
,
Insinna
,
M.
, and
Martelli
,
F.
,
2012
, “
Analysis of Combustor/Vane Interaction With Decoupled and Loosely Coupled Approaches
,”
ASME
Paper No. GT2012-69038.
13.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
14.
Schildmacher
,
K. U.
, and
Koch
,
R.
,
2005
, “
Experimental Investigation of the Interaction of Unsteady Flow With Combustion
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
295
300
.
15.
Dawson
,
J. R.
,
Rodriquez-Martinez
, V
. M.
,
Syred
,
N.
, and
O'Doherty
,
T.
,
2006
, “
The Effect of Combustion Instability on the Structure of Recirculation Zones in Confined Swirling Flames
,”
Combust. Sci. Technol.
,
177
(12), pp.
2349
2371
.
16.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulations of the Flow Within and Downstream of High Swirl Lean Premixed Gas Turbine Combustors
,”
ASME
Paper No. GT2004-53112.
17.
Schluter
,
J.
,
Schonfeld
,
T.
,
Poinsot
,
T.
,
Krebs
,
W.
, and
Hoffman
,
S.
,
2001
, “
Characterization of Confined Swirl Flows Using Large Eddy Simulations
,”
ASME
Paper No. 2001-GT-0060.
18.
Takahashi
,
R.
, and
Ni
,
R.
,
1990
, “
Unsteady Euler Analysis of the Redistribution of an Inlet Temperature Distortion in a Turbine
,”
AIAA
Paper No. 90-2262.
19.
You
,
D.
,
Ham
,
F.
, and
Moin
,
P.
,
2008
, “
Large-Eddy Simulation Analysis of Turbulent Combustion in a Gas Turbine Engine Combustor
,” Center for Turbulence Research, Annual Research Briefs, pp.
219
230
.
20.
Wang
,
P.
,
Bai
,
X. S.
, and
Wessman
,
M.
,
2004
, “
Large Eddy Simulation and Experimental Studies of a Confined Turbulent Swirling Flow
,”
Phys. Fluids
,
16
(
9
), pp.
3306
3324
.
21.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S.
, and
Mongiah
,
C.
,
2007
, “
Large Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
,
583
, pp.
99
122
.
22.
Hall
,
B.
,
Chana
,
K.
, and
Povey
,
T.
,
2014
, “
Design of a Non-Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081501
.
23.
Cameron
,
C.
,
Brouwer
,
J.
,
Wood
,
C.
, and
Samuelsen
,
G.
,
1989
, “
A Detailed Characterization of the Velocity and Thermal Fields in a Model Can Combustor With Wall Jet Injection
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
31
35
.
24.
Goebel
,
S.
,
Abuaf
,
N.
,
Lovett
,
J.
, and
Lee
,
C.
,
1993
, “
Measurements of Combustor Velocity and Turbulence Profiles
,”
ASME
Paper No. 93-GT-228.
25.
Roux
,
S.
,
Lartigue
,
G.
, and
Poinsot
,
T.
,
2005
, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations
,”
Combust. Flame
,
141
(
12
), pp.
40
54
.
26.
Selle
,
L.
,
Benoit
,
L.
,
Poinsot
,
T.
,
Nicoud
,
F.
, and
Krebs
,
W.
,
2006
, “
Joint Use of Compressible Large Eddy Simulation and Helmholtz Solvers for the Analysis of Rotating Modes in a Industrial Swirled Burner
,”
Combust. Flame
,
145
(1–2), pp.
194
205
.
27.
Wankhede
,
M. J.
,
Bressloff
,
N. W.
,
Keane
,
A. J.
,
Caracciolo
,
L.
, and
Zedda
,
M.
,
2010
, “
An Analysis of Unstable Flow Dynamics and Flashback Mechanism Inside a Swirl-Stabilised Lean Burn Combustor
,”
ASME
Paper No. GT2010-22253.
28.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011501
.
29.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
, and
Krebs
,
W.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
30.
Lubbock
,
R.
,
2013
, “
Fast Insertion Probes for Unsteady Temperature and Turbulence Measurements
,” D.Phil. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
31.
Moss
,
R.
,
1992
, “
The Effects of Turbulence Length Scale on Heat Transfer
,”
Ph.D. dissertation
, Department of Engineering Science, University of Oxford, Report No. OUEL 1924/92.
32.
Zimmerman
,
D. R.
,
1979
, “
Laser Anemometer Measurements at the Exit of a T63-C20 Combustor
,”
NASA, Contract No. NAS 3-21267
.
33.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Stitzel
,
S. M.
, and
Thole
,
K. A.
,
2002
, “
Flow Field Simulations of a Gas Turbine Combustor
,”
ASME J. Turbomach.
,
124
(
3
), pp.
508
516
.
34.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
, and
Rosic
,
B.
,
2015
, “
A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
35.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
36.
Oldfield
,
M.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
37.
Doorly
,
J.
, and
Oldfield
,
M.
,
1987
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1159
1168
.
38.
Piccini
,
E.
,
1999
, “
The Development of a New Heat Transfer Gauge for Heat Transfer Facilities
,” D.Phil. thesis, University of Oxford, Oxford, UK.
39.
Denton
,
J. D.
,
1983
, “
An Improved Time-Marching Method for Turbomachinery Flow Calculation
,”
ASME J. Eng. Power
,
105
(
3
), pp.
514
521
.
40.
Klostermeier
,
C.
,
2008
, “
Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design
,”
Ph.D. thesis
, Cambridge University Engineering Department, Cambridge, UK.
41.
Mazzoni
,
C.
,
Luque
,
S.
, and
Rosic
,
B.
,
2015
, “
Capabilities of Thermal Wall Functions to Predict Heat Transfer on the NGVS of a Gas Turbine With Multiple Can Combustors
,”
ASME
Paper No. GT2015-43515.
42.
Jacobi
,
S.
,
2013
, “
Influence of Lean Premixed Combustor Geometry on the First Turbine Vanes' Aerothermal Performance
,” Master's thesis, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
43.
SHARCNet
,
2016
, “
10.1.8. Vortex Core Region, Lambda 2 Criterion
,”
University of Western Ontario
,
London, ON, Canada
, https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/cfd_post/vort-core_details_v.html
44.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
2
), pp.
69
94
.
45.
Richards
,
A.
, 2015, “
University of Oxford Advanced Research Computing Facility
,”
Zenodo
, European Organization for Nuclear Research, Geneva, Switzerland.
This content is only available via PDF.
You do not currently have access to this content.