This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.
Skip Nav Destination
Article navigation
October 2014
Research-Article
MEMS-Scale Turbomachinery Based Vacuum Roughing Pump
Anthony J. Gannon,
Anthony J. Gannon
MAE Department,
Monterey, CA 93943
e-mail: ajgannon@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: ajgannon@nps.edu
Search for other works by this author on:
Garth V. Hobson,
Garth V. Hobson
MAE Department,
Monterey, CA 93943
e-mail: gvhobson@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: gvhobson@nps.edu
Search for other works by this author on:
Michael J. Shea,
Michael J. Shea
MAE Department,
Monterey, CA 93943
e-mail: michaelshea2011@gmail.com
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: michaelshea2011@gmail.com
Search for other works by this author on:
Christopher S. Clay,
Christopher S. Clay
MAE Department,
Monterey, CA 93943
e-mail: clayoven2@yahoo.com
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: clayoven2@yahoo.com
Search for other works by this author on:
Knox T. Millsaps
Knox T. Millsaps
MAE Department,
Monterey, CA 93943
e-mail: millsaps@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: millsaps@nps.edu
Search for other works by this author on:
Anthony J. Gannon
MAE Department,
Monterey, CA 93943
e-mail: ajgannon@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: ajgannon@nps.edu
Garth V. Hobson
MAE Department,
Monterey, CA 93943
e-mail: gvhobson@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: gvhobson@nps.edu
Michael J. Shea
MAE Department,
Monterey, CA 93943
e-mail: michaelshea2011@gmail.com
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: michaelshea2011@gmail.com
Christopher S. Clay
MAE Department,
Monterey, CA 93943
e-mail: clayoven2@yahoo.com
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: clayoven2@yahoo.com
Knox T. Millsaps
MAE Department,
Monterey, CA 93943
e-mail: millsaps@nps.edu
Naval Postgraduate School
,700 Dyer Road, Room 245
,Monterey, CA 93943
e-mail: millsaps@nps.edu
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received May 30, 2014; final manuscript received June 5, 2014; published online July 15, 2014. Editor: Ronald Bunker. This material is declared a work of the US Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.
J. Turbomach. Oct 2014, 136(10): 101002 (7 pages)
Published Online: July 15, 2014
Article history
Received:
May 30, 2014
Revision Received:
June 5, 2014
Citation
Gannon, A. J., Hobson, G. V., Shea, M. J., Clay, C. S., and Millsaps, K. T. (July 15, 2014). "MEMS-Scale Turbomachinery Based Vacuum Roughing Pump." ASME. J. Turbomach. October 2014; 136(10): 101002. https://doi.org/10.1115/1.4027971
Download citation file:
Get Email Alerts
Cited By
Related Articles
On a General Method of Unsteady Potential Calculation Applied to the Compression Stages of a Turbomachine—Part II: Experimental Comparison
J. Fluids Eng (December,2001)
Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids
J. Turbomach (August,2015)
On a General Method of Unsteady Potential Calculation Applied to the Compression Stages of a Turbomachine—Part I: Theoretical Approach
J. Fluids Eng (December,2001)
A Deterministic Stress Model for Rotor-Stator Interactions in Simulations of Average-Passage Flow
J. Fluids Eng (June,2002)
Related Chapters
Generations Past Early History of Steam Power
The Code: An Authorized History of the ASME Boiler and Pressure Vessel Code
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines