Abstract

Multi-leaf journal foil bearing (MLJFB) structures are complex, making performance prediction challenging, and the accurate prediction of gas film thickness and pressure distributions is crucial. In this study, comsol finite-element software was used to establish an initial foil assembly and structural deformation simulation model for an MLJFB with bump foils. Using matlab, a compressible gas lubrication model was established and solved using the finite volume method. Real-time data transfer between comsol and matlab enabled a fully coupled fluid–structure interaction simulation. This model meticulously accounts for the pre-tension force in the multi-leaf bearing assembly, contact friction between adjacent foils, and the interaction between the top foil and gas film pressure. The effects of journal movement distance, direction, and top foil overlapping ratio on the bearing capacity as well as the effects of different external load directions on the journal equilibrium position were analyzed based on this model. The results indicate that increasing the top foil overlapping ratio enhances the bearing capacity of the MLJFB. Furthermore, compared to the direction of the top foil overlap position, external loads applied in the direction of the top foil midpoint are more beneficial for bearing operational stability.

References

1.
Song
,
L.
,
Cheng
,
K.
,
Ding
,
H.
, and
Chen
,
S.
,
2018
, “
Analysis on Discharge Coefficients in FEM Modeling of Hybrid Air Journal Bearings and Experimental Validation
,”
Tribol. Int.
,
119
, pp.
549
558
.
2.
DellaCorte
,
C.
,
2012
, “
Oil-Free Shaft Support System Rotordynamics: Past, Present and Future Challenges and Opportunities
,”
Mech. Syst. Signal Process
,
29
, pp.
67
76
.
3.
Heshmat
,
H.
,
Walton
,
J. F.
, II
, and
Tomaszewski
,
M. J.
,
2005
, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,”
ASME Turbo Expo 2005: Power for Land, Sea and Air
,
Reno, NV
,
June 6–9
, Vol. 1, pp.
919
926
.
4.
Walowit
,
J. A.
,
Anno
,
J. N.
, and
Hamrock
,
B.
,
1977
, “
Modern Developments in Lubrication Mechanics
,”
ASME J. Tribol.
,
99
(
2
), pp.
304
305
.
5.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Tribol.
,
105
(
4
), pp.
647
655
.
6.
Swanson
,
E. E.
,
2006
, “
Bump Foil Damping Using a Simplified Model
,”
ASME J. Tribol.
,
128
(
3
), pp.
542
550
.
7.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Foil Bearing Dynamic Structural Model
,”
ASME/STLE 2007 International Joint Tribology Conference
,
Oct. 22–24
, ASME Paper No. IJTC2007-44110, pp.
993
995
.
8.
Gu
,
Y.
,
Ren
,
G.
, and
Zhou
,
M.
,
2020
, “
A Fully Coupled Elastohydrodynamic Model for Static Performance Analysis of Gas Foil Bearings
,”
Tribol. Int.
,
147
, p.
106297
.
9.
Nielsen
,
B. B.
, and
Santos
,
I. F.
,
2017
, “
Transient and Steady State Behaviour of Elasto–Aerodynamic Air Foil Bearings, Considering Bump Foil Compliance and Top Foil Inertia and Flexibility: A Numerical Investigation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
10
), pp.
1235
1253
.
10.
Gad
,
A. M.
, and
Kaneko
,
S.
,
2014
, “
A New Structural Stiffness Model for Bump-Type Foil Bearings: Application to Generation II Gas Lubricated Foil Thrust Bearing
,”
ASME J. Tribol.
,
136
(
4
), p.
041701
.
11.
Lee
,
Y.-B.
,
Park
,
D.-J.
,
Kim
,
C.-H.
, and
Kim
,
S.-J.
,
2008
, “
Operating Characteristics of the Bump Foil Journal Bearings With Top Foil Bending Phenomenon and Correlation Among Bump Foils
,”
Tribol. Int.
,
41
(
4
), pp.
221
233
.
12.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.
13.
Carpino
,
M.
, and
Talmage
,
G.
,
2003
, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
Tribol. Trans.
,
46
(
4
), pp.
560
565
.
14.
Bin Hassan
,
M. F.
, and
Bonello
,
P.
,
2017
, “
A New Modal-Based Approach for Modelling the Bump Foil Structure in the Simultaneous Solution of Foil-Air Bearing Rotor Dynamic Problems
,”
J. Sound Vib.
,
396
, pp.
255
273
.
15.
Zywica
,
G.
,
Baginski
,
P.
,
Bogulicz
,
M.
,
Martowicz
,
A.
,
Roemer
,
J.
, and
Kantor
,
S.
,
2022
, “
Numerical Identification of the Dynamic Characteristics of a Nonlinear Foil Bearing Structure: Effect of the Excitation Force Amplitude and the Assembly Preload
,”
J. Sound Vib.
,
520
(
7
), p.
116663
.
16.
Fatu
,
A.
, and
Arghir
,
M.
,
2018
, “
Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041506
.
17.
Sudheer Kumar Reddy
,
D.
,
Swarnamani
,
S.
, and
Prabhu
,
B. S.
,
1997
, “
Analysis of Aerodynamic Multileaf Foil Journal Bearings
,”
Wear
,
209
(
1–2
), pp.
115
122
.
18.
Arakere
,
N. K.
, and
Nelson
,
H. D.
,
1992
, “
An Analysis of Gas-Lubricated Foil-Journal Bearings
,”
Tribol. Trans.
,
35
(
1
), pp.
1
10
.
19.
Du
,
J.
,
Zhu
,
J.
,
Li
,
B.
,
Liu
,
D.
, and
Song
,
C.
,
2015
, “
The Effect of Area Contact on the Static Performance of Multileaf Foil Bearings
,”
Tribol. Trans.
,
58
(
4
), pp.
592
601
.
20.
Hu
,
L.
,
Zhang
,
G.
,
Liu
,
Z.
,
Ma
,
R.
,
Wang
,
Y.
, and
Zhang
,
J.
,
2013
, “
Performance Analysis of Multi-Leaf Oil Lubricated Foil Bearing
,”
Proc. Inst. Mech. Eng, Part J: J. Eng. Tribol.
,
227
(
9
), pp.
962
979
.
21.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1976
, “
A Theoretical Investigation of the Multileaf Journal Bearing
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
237
242
.
22.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1997
, “
A Theoretical Analysis of a Compliant Shell Air Bearing
,”
ASME J. Tribol.
,
99
(
1
), pp.
75
81
.
23.
Feng
,
K.
,
Zhang
,
M.
,
Li
,
W.-J.
,
Jin
,
P.
, and
Wang
,
X.-G.
,
2017
, “
Theoretical Design, Manufacturing, and Numerical Prediction of a Novel Multileaf Foil Journal Gas Bearing for PowerMEMs
,”
Proc. Inst. Mech. Eng., Part J: J Eng. Tribol.
,
232
(
7
), pp.
823
836
.
24.
Heshmat
,
C. A.
, and
Heshmat
,
H.
,
1995
, “
An Analysis of Gas-Lubricated, Multileaf Foil Journal Bearings With Backing Springs
,”
ASME J. Tribol.
,
117
(
3
), pp.
437
443
.
25.
Arakere
,
N. K.
,
1996
, “
Analysis of Foil Journal Bearings With Backing Springs
,”
Tribol. Trans.
,
39
(
1
), pp.
208
214
.
26.
Duan
,
W.
,
Sun
,
Y.
,
Geng
,
H.
,
Ding
,
C.
,
Yang
,
W.
, and
Yu
,
L.
,
2013
, “
Static Performance of Multi-Leaf Compliant Gas Foil Journal Bearings With Assembly Preload
,”
2013 IEEE International Conference on Mechatronics and Automation
,
Takamatsu, Japan
,
Aug. 4–7
, pp.
681
685
.
27.
Haipeng
,
G.
,
Shemiao
,
Q.
,
Lie
,
Y.
,
TieJun
,
W.
, and
Shuhai
,
Y.
,
2009
, “
The Finite Element Simulation of the Multi-Leaf Foil Journal Bearings With Large Assembly Preload
,”
2009 IEEE International Conference on Mechatronics and Automation
,
Changchun
,
Aug. 9–12
, pp.
3739
3744
.
28.
Li
,
C.
,
Du
,
J.
,
Zhu
,
J.
, and
Yao
,
Y.
,
2019
, “
Effects of Structural Parameters on the Load Carrying Capacity of the Multi-Leaf Gas Foil Journal Bearing Based on Contact Mechanics
,”
Tribol. Int.
,
131
, pp.
318
331
.
29.
Iordanoff
,
I.
,
Hermel
,
P.
, and
Stéfan
,
P.
,
1993
, “
Surface Contact in a Symmetrical Loading of a Multileaf Journal Bearing
,”
Tribol. Ser.
,
25
, pp.
169
177
.
30.
Xu
,
B.
, and
Zhang
,
J.
,
2022
, “
Influence of Contact Friction on Static Characteristics of Multileaf Bump Foil Bearing
,”
J. Phys.: Conf. Ser.
,
2235
(
1
), p.
012026
.
31.
Ding
,
P.
,
Hu
,
Y.
,
Wang
,
X.
, and
Meng
,
Y.
,
2024
, “
Effects of Structure Parameters on Static Performance of Gas Foil Bearings Based on a New Fully Coupled Elastic–Aerodynamic Model
,”
Lubricants
,
12
(
10
), p.
348
.
32.
Lee
,
D.-H.
,
Kim
,
Y.-C.
, and
Kim
,
K.-W.
,
2008
, “
The Static Performance Analysis of Foil Journal Bearings Considering Three-Dimensional Shape of the Foil Structure
,”
ASME J. Tribol.
,
130
(
3
), p.
031102
.
You do not currently have access to this content.