Graphical Abstract Figure

Thermomechanical processing, EBSD characterization, optical profilometer and coefficient of friction profile

Graphical Abstract Figure

Thermomechanical processing, EBSD characterization, optical profilometer and coefficient of friction profile

Close modal

Abstract

High-entropy alloys have garnered significant attention from industry and academia, primarily due to their distinctive characteristics that offer prospects for future functional applications in the aerospace and automobile industries. The present work analyzes the impact of numerous annealed temperatures (800, 900, 1000 °C) on the microstructural evolution, phase formation, and tribological attributes of FeCoNiMn0.25Al0.25. According to X-ray diffraction studies, high-entropy alloys annealed at 800 °C and 900 °C produced dual phases, i.e., face-centered cubic (FCC) + body-centered cubic (BCC) solid solutions phase due to the presence of BCC precipitates in the FCC matrix. However, the sample annealed at 1000 °C exhibited a single-phase FCC solid solution. The electron back-scattered diffraction microstructure analysis indicates that, until 900 °C, there is no significant grain growth. Increasing the annealing temperature further results in a rise in average grain diameter, which significantly reduces microhardness. The inverse pole figure study reveals the existence of ⟨001⟩ and ⟨111⟩ texture in annealed high-entropy alloys. The coefficient of friction shows that high-entropy alloys annealed at 1000 °C have the lowest coefficient of friction because of the formation of tribo layers when sliding between two mating surfaces and avoiding direct contact between them. In addition, high-entropy alloy annealed at 1000 °C shows a decrease in the coefficient of friction by 8.5% and an increased specific wear-rate by 50% compared to the cold-swaged high-entropy alloy.

References

1.
Murty
,
B. S.
,
Yeh
,
J. W.
,
Ranganathan
,
S.
, and
Bhattacharjee
,
P. P.
,
2019
,
High-Entropy Alloys
,
Elsevier
,
New York
.
2.
Kumar
,
H.
,
Bhaduri
,
G. A.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2023
, “
Effect of Annealing on Microstructural and Tribological Properties of CoCrFeNiW0. 3 + 5 at% C High Entropy Alloy
,”
J. Mater. Eng. Perform.
,
32
(
14
), pp.
6293
6306
.
3.
Yeh
,
J. W.
,
Chen
,
S. K.
,
Lin
,
S. J.
,
Gan
,
J. Y.
,
Chin
,
T. S.
,
Shun
,
T. T.
,
Tsau
,
C. H.
, and
Chang
,
S. Y.
,
2004
, “
Nanostructured High-Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
4.
Sathiaraj
,
G. D.
,
Skrotzki
,
W.
,
Pukenas
,
A.
,
Schaarschuch
,
R.
,
Immanuel
,
R. J.
,
Panigrahi
,
S. K.
,
Chelvane
,
J. A.
, and
Kumar
,
S. S.
,
2018
, “
Effect of Annealing on the Microstructure and Texture of Cold Rolled CrCoNi Medium-Entropy Alloy
,”
Intermetallic
,
101
, pp.
87
98
.
5.
Sathiaraj
,
G. D.
, and
Bhattacharjee
,
P. P.
,
2015
, “
Effect of Cold-Rolling Strain on the Evolution of Annealing Texture of Equiatomic CoCrFeMnNi High Entropy Alloy
,”
Mater. Charact.
,
109
, pp.
189
197
.
6.
Schmidt
,
S.
,
Sathiaraj
,
G. D.
,
Kumar
,
S. S.
,
Sulkowski
,
B.
,
Suwas
,
S.
,
Jaschinski
,
J.
,
Pukenas
,
A.
,
Gu
,
B.
, and
Skrotzki
,
W.
,
2021
, “
Effect of Rolling and Annealing Temperature on the Mechanical Properties of CrMnFeCoNi High-Entropy Alloy
,”
Mater. Chem. Phys.
,
270
, p.
124830
.
7.
Modanwal
,
R. P.
,
Murugesan
,
J.
, and
Sathiaraj
,
D.
,
2024
, “
Tribological and Corrosion Behaviour of Non-Equiatomic Magnetic FeCoNiMnAl High Entropy Alloy
,”
Tribol. Int.
,
198
, p.
109903
.
8.
Deng
,
G.
,
Tieu
,
A. K.
,
Lan
,
X.
,
Su
,
L.
,
Wang
,
L.
,
Zhu
,
Q.
, and
Zhu
,
H.
,
2020
, “
Effects of Normal Load and Velocity on the Dry Sliding Tribological Behaviour of CoCrFeNiMo0. 2 High Entropy Alloy
,”
Tribol. Int.
,
144
, p.
106116
.
9.
Wang
,
X. H.
,
Liu
,
S. S.
,
Zhao
,
G. L.
, and
Zhang
,
M.
,
2022
, “
Fabrication of In Situ Tin Ceramic Particle Reinforced High Entropy Alloy Composite Coatings by Laser Cladding Processing
,”
ASME J. Tribol.
,
144
(
3
), p.
031402
.
10.
Wang
,
G.
,
Liu
,
X.
,
Fan
,
J.
, and
Pu
,
J.
,
2023
, “
Study on Tribological Properties of Oxygen-Doped High-Entropy Alloy Coating Against Brush Wires at High Temperatures
,”
ASME J. Tribol.
,
145
(
1
), p.
011701
.
11.
Wu
,
J. M.
,
Lin
,
S. J.
,
Yeh
,
J. W.
,
Chen
,
S. K.
,
Huang
,
Y. S.
, and
Chen
,
H. C.
,
2006
, “
Adhesive Wear Behavior of AlxCoCrCuFeNi High-Entropy Alloys as a Function of Aluminum Content
,”
Wear
,
261
(
5–6
), pp.
513
519
.
12.
Faraji
,
A.
,
Farvizi
,
M.
,
Ebadzadeh
,
T.
, and
Kim
,
H. S.
,
2022
, “
Microstructure, Wear Performance, and Mechanical Properties of Spark Plasma-Sintered AlCoCrFeNi High-Entropy Alloy After Heat Treatment
,”
Intermetallics
,
149
, p.
107656
.
13.
Malatji
,
N.
,
Lengopeng
,
T.
,
Pityana
,
S.
, and
Popoola
,
A. P. I.
,
2020
, “
Effect of Heat Treatment on the Microstructure, Microhardness, and Wear Characteristics of AlCrFeCuNi High-Entropy Alloy
,”
Int. J. Adv. Manuf. Technol.
,
111
(
7–8
), pp.
2021
2029
.
14.
Deng
,
W.
,
Xing
,
S.
, and
Chen
,
M.
,
2023
, “
Effect of Annealing Treatments on Microstructure, Tensile and Wear Properties of Cold-Rolled FeCoCrNiMn High Entropy Alloy
,”
J. Mater. Res. Technol.
,
27
, pp.
3849
3859
.
15.
Kong
,
D.
,
Guo
,
J.
,
Liu
,
R.
,
Zhang
,
X.
,
Song
,
Y.
,
Li
,
Z.
,
Guo
,
F.
,
Xing
,
X.
,
Xu
,
Y.
, and
Wang
,
W.
,
2019
, “
Effect of Remelting and Annealing on the Wear Resistance of AlCoCrFeNiTi0. 5 High Entropy Alloys
,”
Intermetallics
,
114
, p.
106560
.
16.
Wu
,
Z. X.
,
He
,
M. J.
,
Feng
,
C. S.
,
Wang
,
T. L.
,
Lin
,
M. Z.
, and
Liao
,
W. B.
,
2022
, “
Effects of Annealing on the Microstructures and Wear Resistance of CoCrFeNiMn High-Entropy Alloy Coatings
,”
J. Therm. Spray Technol.
,
31
(
4
), pp.
1244
1251
.
17.
Guo
,
W.
,
Li
,
J.
,
Qi
,
M.
,
Xu
,
Y.
, and
Ezatpour
,
H. R.
,
2021
, “
Effects of Heat Treatment on the Microstructure, Wear Behavior and Corrosion Resistance of AlCoCrFeNiSi High-Entropy Alloy
,”
Intermetallics
,
138
, p.
107324
.
18.
Modanwal
,
R. P.
,
Sathiaraj
,
D.
,
Singh
,
P. K.
,
Tyagi
,
R.
, and
Pazhani
,
A.
,
2024
,
Tribological Aspects of Additive Manufacturing
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
76
96
.
19.
Goyal
,
V.
, and
Verma
,
G.
,
2024
, “
Tribological Behavior of Direct Metal Laser Sintering–Manufactured Ti6Al4V Alloy in Different Biofluids for Orthopedic Implants
,”
ASME J. Tribol.
,
146
(
6
), p.
064001
.
20.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2024
, “
Effect of Silicon Carbide Incorporation and Heat Treatment on Tribological Properties of Electroless Ni–B–W Alloy Coating
,”
Mater. Chem. Phys.
,
311
, p.
128500
.
21.
Nemane
,
V.
,
Sharma
,
V.
, and
Chatterjee
,
S.
,
2022
, “
Tribological Electroless Ternary Ni-BW Coatings: A Suitable Alternative to Hard Chromium Coatings
,”
ASME J. Tribol.
,
144
(
12
), p.
121401
.
22.
Joseph
,
J.
,
Haghdadi
,
N.
,
Shamlaye
,
K.
,
Hodgson
,
P.
,
Barnett
,
M.
, and
Fabijanic
,
D.
,
2019
, “
The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures
,”
Wear
,
428
, pp.
32
44
.
23.
Xu
,
J.
,
Zhang
,
J. Y.
,
Wang
,
Y. Q.
,
Zhang
,
P.
,
Kuang
,
J.
,
Liu
,
G.
,
Zhang
,
G. J.
, and
Sun
,
J.
,
2020
, “
Annealing-Dependent Microstructure, Magnetic and Mechanical Properties of High-Entropy FeCoNiAl0. 5 Alloy
,”
Mater. Sci. Eng.: A
,
776
, p.
139003
.
24.
Ji
,
G. N.
,
Xiang
,
J.
,
Zhao
,
R. D.
,
Wu
,
F. F.
, and
Chen
,
S. H.
,
2022
, “
Microstructure and Mechanical Properties of NixFeCoCrAl High-Entropy Alloys
,”
Mater. Today Commun.
,
32
, p.
103919
.
25.
Liu
,
H.
,
Liu
,
J.
,
Chen
,
P.
, and
Yang
,
H.
,
2019
, “
Microstructure and High Temperature Wear Behaviour of In-Situ TiC Reinforced AlCoCrFeNi-Based High-Entropy Alloy Composite Coatings Fabricated by Laser Cladding
,”
Opt. Laser Technol.
,
118
, pp.
140
150
.
26.
Li
,
P.
,
Wang
,
A.
, and
Liu
,
C. T.
,
2017
, “
A Ductile High Entropy Alloy With Attractive Magnetic Properties
,”
J. Alloys Compd.
,
694
, pp.
55
60
.
27.
Zhang
,
K.
, and
Fu
,
Z.
,
2012
, “
Effects of Annealing Treatment on Properties of CoCrFeNiTiAlx Multi-component Alloys
,”
Intermetallics
,
28
, pp.
34
39
.
28.
Rogal
,
L.
,
Szklarz
,
Z.
,
Bobrowski
,
P.
,
Kalita
,
D.
,
Garzeł
,
G.
,
Tarasek
,
A.
,
Kot
,
M.
, and
Szlezynger
,
M.
,
2019
, “
Microstructure and Mechanical Properties of Al–Co–Cr–Fe–Ni Base High Entropy Alloys Obtained Using Powder Metallurgy
,”
Met. Mater. Int.
,
25
(
4
), pp.
930
945
.
29.
Sekhar
,
R. A.
,
Samal
,
S.
,
Nayan
,
N.
, and
Bakshi
,
S. R.
,
2019
, “
Microstructure and Mechanical Properties of Ti-Al-Ni-Co-Fe Based High Entropy Alloys Prepared by Powder Metallurgy Route
,”
J. Alloys Compd.
,
787
, pp.
123
132
.
30.
Cui
,
Y.
,
Shen
,
J.
,
Manladan
,
S. M.
,
Geng
,
K.
, and
Hu
,
S.
,
2020
, “
Wear Resistance of FeCoCrNiMnAlx High-Entropy Alloy Coatings at High Temperature
,”
Appl. Surf. Sci.
,
512
, p.
145736
.
31.
Yang
,
C. M.
,
Liu
,
X. B.
,
Zhu
,
Z. X.
,
Zhou
,
A.
,
Zhou
,
H. B.
, and
Zhang
,
S. H.
,
2024
, “
Study of Tribological Property of Laser-Cladded FeCoCrNiMnx High-Entropy Alloy Coatings Via Experiment and Molecular Dynamics Simulation
,”
Tribol. Int.
,
191
, p.
109106
.
32.
Kumar
,
D.
,
2023
, “
Recent Advances in Tribology of High Entropy Alloys: A Critical Review
,”
Prog. Mater. Sci.
,
136
, p.
101106
.
33.
Lu
,
T.
,
He
,
T.
,
Zhao
,
P.
,
Sun
,
K.
,
Andreoli
,
A. F.
,
Chen
,
H.
,
Chen
,
W.
,
Fu
,
Z.
, and
Scudino
,
S.
,
2021
, “
Fine Tuning In-Sync the Mechanical and Magnetic Properties of FeCoNiAl0. 25Mn0. 25 High-Entropy Alloy Through Cold Rolling and Annealing Treatment
,”
J. Mater. Process. Technol.
,
289
, p.
116945
.
34.
Soria
,
S. R.
,
Soul
,
H.
,
Bergant
,
M.
, and
Yawny
,
A.
,
2024
, “
Fretting Wear Behaviour of Biomedical Grade Ti6Al4V Produced by Electron Beam Powder Bed Fusion
,”
Addit. Manuf.
,
86
, p.
104217
.
35.
Nguyen
,
C.
,
Tieu
,
A. K.
,
Deng
,
G.
,
Wexler
,
D.
,
Vo
,
T. D.
,
Wang
,
L.
, and
Yang
,
J.
,
2022
, “
Tribological Performance of a Cost-Effective CrFeNiAl0. 3Ti0. 3 High Entropy Alloy Based Self-Lubricating Composite in a Wide Temperature Range
,”
Tribol. Int.
,
174
, p.
107743
.
36.
Kumari
,
P.
,
Mishra
,
R. K.
,
Gupta
,
A. K.
,
Mohapatra
,
S.
, and
Shahi
,
R. R.
,
2023
, “
A Systematic Investigations on Effect of Annealing Temperature on Magnetic Properties of a Promising Soft Magnetic Co35Cr5Fe10Ni30Ti20 HEA
,”
J. Alloys Compd.
,
931
, p.
167451
.
37.
Ahmad
,
A. A.
,
Migdadi
,
A. B.
,
Alsaad
,
A. M.
,
Qattan
,
I. A.
,
Al-Bataineh
,
Q. M.
, and
Telfah
,
A.
,
2022
, “
Computational and Experimental Characterizations of Annealed Cu2ZnSnS4 Thin Films
,”
Heliyon
,
8
(
1
), p.
e08683
.
38.
Vanalakar
,
S. A.
,
Shin
,
S. W.
,
Agawane
,
G. L.
,
Suryawanshi
,
M. P.
,
Gurav
,
K. V.
,
Patil
,
P. S.
, and
Kim
,
J. H.
,
2014
, “
Effect of Post-Annealing Atmosphere on the Grain-Size and Surface Morphological Properties of Pulsed Laser Deposited CZTS Thin Films
,”
Ceram. Int.
,
40
(
9
), pp.
15097
15103
.
39.
Sohrabi
,
M. J.
,
Mirzadeh
,
H.
,
Geranmayeh
,
A. R.
, and
Mahmudi
,
R.
,
2023
, “
Grain Size Dependent Mechanical Properties of CoCrFeMnNi High-Entropy Alloy Investigated by Shear Punch Testing
,”
J. Mater. Res. Technol.
,
27
, pp.
1258
1264
.
40.
Pei
,
W.
,
Yang
,
S.
,
Cao
,
K.
, and
Zhao
,
A.
,
2023
, “
Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel
,”
Materials
,
16
(
11
), p.
3988
.
41.
Tang
,
Q.
,
Cai
,
X.
, and
Dai
,
P.
,
2016
, “
Grain Boundary Character Distribution in CoCrFeMnNi High-Entropy Alloy After Cold Rolling and Subsequent Annealing
,”
Heat Treat. Met.
,
41
(
1
), pp.
217
221
.
42.
Luo
,
J.
, and
Zhou
,
N.
,
2023
, “
High-Entropy Grain Boundaries
,”
Commun. Mater.
,
4
(
1
), p.
7
.
43.
Sathiaraj
,
G. D.
,
Pukenas
,
A.
, and
Skrotzki
,
W.
,
2020
, “
Texture Formation in Face-Centered Cubic High-Entropy Alloys
,”
J. Alloys Compd.
,
826
, p.
154183
.
44.
Masemola
,
K.
,
Popoola
,
P.
, and
Malatji
,
N.
,
2020
, “
The Effect of Annealing Temperature on the Microstructure, Mechanical and Electrochemical Properties of Arc-Melted AlCrFeMnNi Equi-Atomic High Entropy Alloy
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
5241
5251
.
45.
Zhu
,
Z. G.
,
Ma
,
K. H.
,
Yang
,
X.
, and
Shek
,
C. H.
,
2017
, “
Annealing Effect on the Phase Stability and Mechanical Properties of (FeNiCrMn)(100−x) Cox High Entropy Alloys
,”
J. Alloys Compd.
,
695
, pp.
2945
2950
.
46.
Shabani
,
A.
,
Toroghinejad
,
M. R.
,
Shafyei
,
A.
, and
Loge
,
R. E.
,
2019
, “
Evaluation of the Mechanical Properties of the Heat Treated FeCrCuMnNi High Entropy Alloy
,”
Mater. Chem. Phys.
,
221
, pp.
68
77
.
47.
Furukawa
,
M.
,
Horita
,
Z.
,
Nemoto
,
M.
,
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
1996
, “
Microhardness Measurements and the Hall-Petch Relationship in an Al-Mg Alloy With Submicrometer Grain Size
,”
Acta Mater.
,
44
(
11
), pp.
4619
4629
.
48.
Bhansali
,
K.
,
Keche
,
A. J.
,
Gogte
,
C. L.
, and
Chopra
,
S.
,
2020
, “
Effect of Grain Size on Hall-Petch Relationship During Rolling Process of Reinforcement Bar
,”
Mater. Today Proc.
,
26
, pp.
3173
3178
.
49.
Munitz
,
A.
,
Kaufman
,
M. J.
,
Nahmany
,
M.
,
Derimow
,
N.
, and
Abbaschian
,
R.
,
2018
, “
Microstructure and Mechanical Properties of Heat Treated Al1. 25CoCrCuFeNi High Entropy Alloys
,”
Mater. Sci. Eng. A.
,
714
, pp.
146
159
.
50.
Arya
,
P. K.
,
Kumar
,
P.
,
Negi
,
B. S.
,
Jain
,
N. K.
, and
Sathiaraj
,
D.
,
2024
, “
Tribological Characteristics of Additively Manufactured Ti6Al4VxCryNi Alloys
,”
Mater. Today Commun.
,
38
, p.
108113
.
51.
Zhang
,
Q.
,
Yang
,
K.
,
Yuan
,
W.
,
Dong
,
Y.
,
Jiang
,
B.
,
Li
,
C.
, and
Zhang
,
Z.
,
2024
, “
Effect of Annealing Temperature on Microstructure and Mechanical Properties of Fe50Mn25Co10Cr10Ti5 High Entropy Alloy
,”
J. Mater. Eng. Perform.
,
33
(
18
), pp.
9447
9456
.
52.
Sheng
,
L.
,
Zhengwei
,
X.
,
Yafeng
,
L.
,
Yun
,
L.
,
Dongsheng
,
J.
, and
Ping
,
W.
,
2022
, “
Effect of Annealing Temperature on the Structure and Properties of FeCoCrNiMo High-Entropy Alloy
,”
High Temp. Mater. Process.
,
41
(
1
), pp.
417
423
.
53.
Mokhtar
,
M. O. A.
,
1982
, “
The Effect of Hardness on the Frictional Behaviour of Metals
,”
Wear
,
78
(
3
), pp.
297
304
.
54.
Juan
,
Y. F.
,
Li
,
J.
,
Jiang
,
Y. Q.
,
Jia
,
W. L.
, and
Lu
,
Z. J.
,
2019
, “
Modified Criterions for Phase Prediction in the Multi-component Laser-Clad Coatings and Investigations Into Microstructural Evolution/Wear Resistance of FeCrCoNiAlMox Laser-Clad Coatings
,”
Appl. Surf. Sci.
,
465
, pp.
700
714
.
55.
Luo
,
X. S.
,
Li
,
J.
,
Jin
,
Y. L.
,
Hu
,
C. P.
,
Jia
,
D.
,
Zhan
,
S. P.
,
Yu
,
Y.
,
Hua
,
M.
, and
Duan
,
H. T.
,
2020
, “
Heat Treatment Influence on Tribological Properties of AlCoCrCuFeNi High-Entropy Alloy in Hydrogen Peroxide-Solution
,”
Met. Mater. Int.
,
26
(
8
), pp.
1286
1294
.
56.
Liu
,
H.
,
Liu
,
J.
,
Li
,
X.
,
Chen
,
P.
,
Yang
,
H.
, and
Hao
,
J.
,
2020
, “
Effect of Heat Treatment on Phase Stability and Wear Behavior of Laser Clad AlCoCrFeNiTi0. 8 High-Entropy Alloy Coatings
,”
Surf. Coatings Technol.
,
392
, p.
125758
.
57.
Lee
,
H.
,
Sharma
,
A.
, and
Ahn
,
B.
,
2023
, “
Dry Sliding Wear and Friction Behavior of Powder Metallurgy FeCoNiAlSi0. 2 High-Entropy Alloys
,”
Wear
,
530
, p.
205011
.
58.
Mao
,
Y. S.
,
Wang
,
L.
,
Chen
,
K. M.
,
Wang
,
S. Q.
, and
Cui
,
X. H.
,
2013
, “
Tribo-Layer and Its Role in Dry Sliding Wear of Ti–6Al–4V Alloy
,”
Wear
,
297
(
1–2
), pp.
1032
1039
.
59.
Nong
,
Z. S.
,
Lei
,
Y. N.
, and
Zhu
,
J. C.
,
2018
, “
Wear and Oxidation Resistances of AlCrFeNiTi-Based High Entropy Alloys
,”
Intermetallics
,
101
, pp.
144
151
.
60.
Guo
,
Y.
, and
Liu
,
Q.
,
2018
, “
MoFeCrTiWAlNb Refractory High-Entropy Alloy Coating Fabricated by Rectangular-Spot Laser Cladding
,”
Intermetallics
,
102
, pp.
78
87
.
61.
Han
,
Z.
,
Ma
,
Z.
,
Shen
,
G.
,
Zhang
,
W.
,
Li
,
J.
,
Li
,
Y.
,
Tong
,
S.
, et al.
,
2024
, “
An Additively Manufactured High-Entropy Alloy With Superior Wear Resistance by Nanoprecipitation and High Density Dislocations
,”
Tribol. Int.
,
199
, p.
109993
.
62.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2022
, “
Nanomechanical, Tribological, and Scratch Properties of Electroless Ni-BW Alloy and Ni-BW-SiC Composite Coatings
,”
ASME J. Tribol.
,
144
(
5
), p.
051402
.
63.
Qiao
,
L.
,
Ramanujan
,
R. V.
, and
Zhu
,
J.
,
2023
, “
Uncovering Wear Mechanism of a Fe2Ni2CrAl Multi-principal Elements Alloy
,”
J. Mater. Sci.
,
58
(
6
), pp.
2660
2675
.
64.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
65.
Suh
,
N. P.
,
1977
, “
An Overview of the Delamination Theory of Wear
,”
Wear
,
44
(
1
), pp.
1
16
.
66.
Nutor
,
R. K.
,
Azeemullah
,
M.
,
Cao
,
Q. P.
,
Wang
,
X. D.
,
Zhang
,
D. X.
, and
Jiang
,
J. Z.
,
2021
, “
Microstructure and Properties of a Co-Free Fe50Mn27Ni10Cr13 High Entropy Alloy
,”
J. Alloys Compd.
,
851
, p.
156842
.
67.
Salunkhe
,
P.
,
Muhammed Ali
,
A. V.
, and
Kekuda
,
D.
,
2020
, “
Investigation on Tailoring Physical Properties of Nickel Oxide Thin Films Grown by DC Magnetron Sputtering
,”
Mater. Res. Express
,
7
(
1
), p.
016427
.
68.
Zhang
,
M.
,
Zhang
,
X.
,
Niu
,
M.
,
Jiang
,
Z.
,
Chen
,
H.
, and
Sun
,
Y.
,
2022
, “
High-Temperature Tribological Behavior of CoCrFeNiV High-Entropy Alloys: A Parallel Comparison With CoCrFeNiMn High-Entropy Alloys
,”
Tribol. Int.
,
174
, p.
107736
.
69.
Ding
,
Y.
,
Lin
,
J.
,
Wen
,
C.
,
Zhang
,
D.
, and
Li
,
Y.
,
2016
, “
Mechanical Properties, In Vitro Corrosion and Biocompatibility of Newly Developed Biodegradable Mg-Zr-Sr-Ho Alloys for Biomedical Applications
,”
Sci. Rep.
,
6
(
1
), p.
31990
.
70.
Rajan
,
A.
,
Sharma
,
M.
, and
Sahu
,
N. K.
,
2020
, “
Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia
,”
Sci. Rep.
,
10
(
1
), p.
15045
.
71.
Wang
,
H. D.
,
Liu
,
J. N.
,
Xing
,
Z. G.
,
Ma
,
G. Z.
,
Cui
,
X. F.
,
Jin
,
G.
, and
Xu
,
B. S.
,
2020
, “
Microstructure and Corrosion Behaviour of AlCoFeNiTiZr High-Entropy Alloy Films
,”
Surf. Eng.
,
36
(
1
), pp.
78
85
.
72.
Kalasina
,
S.
,
Kongsawatvoragul
,
K.
,
Phattharasupakun
,
N.
,
Phattharaphuti
,
P.
, and
Sawangphruk
,
M.
,
2020
, “
Cobalt Oxysulphide/Hydroxide Nanosheets With Dual Properties Based on Electrochromism and a Charge Storage Mechanism
,”
RSC Adv.
,
10
(
24
), pp.
14154
14160
.
You do not currently have access to this content.