Abstract

Ultrasonic surface rolling (USR) was applied to GCr15 steel with different static loads and passes to improve the friction and wear properties, and then the fretting wear mechanism of GCr15 steel after USR treatment was systematically investigated. The results showed that the specimens treated by the USR had lower surface roughness and significantly increased compressive residual stress and microhardness. Furthermore, severe plastic deformation occurred in the surface layer of the specimen, which refined the grains and increased the density of high- and low-angle grain boundaries. Besides, the results of the fretting test showed that the USR treated specimens had lower wear volume, dissipated energy, and steady-state friction coefficient. The fretting wear resistance increased with the static load and the number of passes. The fretting wear mechanism changed from abrasive wear and severe adhesive wear to slight fatigue wear and abrasive wear owing to the use of the USR treatment. Surface smoothing and hardening are responsible for the improvement in the fretting wear properties of GCr15 steel for USR treatment.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lu
,
B. H.
,
Wei
,
W. T.
,
Mao
,
H. J.
, and
Lu
,
X. H.
,
2019
, “
Effect of Cold Ring Rolling on the Wear Resistance of GCr15 Bearing Steel After Quenching and Tempering
,”
Metals
,
9
(
6
), pp.
647
647
.
2.
Ramesh
,
R.
, and
Gnanamoorthy
,
R.
,
2005
, “
Fretting Wear Behavior of Liquid Nitride Structural Steel, En24 and Bearing Steel, En31
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
61
67
.
3.
Lin
,
H.
,
Yang
,
M. S.
, and
Shu
,
B. P.
,
2020
, “
Fretting Wear Behaviour of High-Nitrogen Stainless Bearing Steel Under Lubrication Condition
,”
J. Iron. Steel Res. Int.
,
27
(
7
), pp.
849
866
.
4.
Rai
,
P. K.
,
Shekhar
,
S.
, and
Mondal
,
K.
,
2018
, “
Effects of Grain Size Gradients on the Fretting Wear of a Specially-Processed Low Carbon Steel Against AISI E52100 Bearing Steel
,”
Wear
,
412–413
, pp.
1
13
.
5.
Massi
,
F.
,
Rocchi
,
J.
,
Culla
,
A.
, and
Berthier
,
Y.
,
2009
, “
Coupling System Dynamics and Contact Behaviour: Modelling Bearings Subjected to Environmental Induced Vibrations and ‘False Brinelling’ Degradation
,”
Mech. Syst. Signal Process
,
24
(
4
), pp.
1068
1080
.
6.
Sun
,
X. H.
,
Zhang
,
M. Y.
,
Xia
,
D. X.
,
Wang
,
S. R.
,
Zhang
,
Y. H.
,
Cai
,
M. G.
,
Si
,
G. Y.
, and
Li
,
S. Q.
,
2023
, “
Effect of Ultrasonic Surface Rolling on Fretting Wear Behavior of GCr15 Steel
,”
J. Phys. Conf. Ser.
,
2541
(
1
), p.
012016
.
7.
Sun
,
Y. G.
,
Wang
,
H. B.
,
Liu
,
W.
,
Song
,
G.
, and
Li
,
Q. L.
,
2019
, “
Improvement of Surface Resistance to Cavitation Corrosion of Nickel Aluminum Bronze by Electropulsing-Assisted Ultrasonic Surface Rolling Process
,”
Surf. Coat. Technol.
,
368
, pp.
215
223
.
8.
Ma
,
Y. F.
,
Xiong
,
Y.
,
Chen
,
Z. G.
,
Zha
,
X. Q.
,
He
,
T. T.
,
Li
,
Y.
,
Pallaspuro
,
S.
,
Wang
,
S. B.
,
Huttula
,
M.
, and
Cao
,
W.
,
2022
, “
Effect of Surface Nanocrystallization Produced by Laser Shock Processing on the Corrosion Fatigue Behavior of 300M Steel
,”
Surf. Coat. Technol.
,
439
, p.
128426
.
9.
Fasihi
,
P.
,
Abrahams
,
R.
,
Mutton
,
P.
, and
Yan
,
W. Y.
,
2021
, “
Tribological Properties of a New Alloy Laser Cladded on Hypereutectoid Rails
,”
ASME J. Tribol.
,
143
(
5
), pp.
1
24
.
10.
Zeng
,
D. F.
,
Liu
,
L. T.
,
Ning
,
Z.
,
Zhang
,
N.
, and
Zhang
,
J. W.
,
2017
, “
Influence of a Hybrid Treatment Consisting of Fine Particle Bombardment and Powder Impact Plating on the Scuffing Behavior of Ductile Cast Iron
,”
Wear
,
372
, pp.
1
11
.
11.
Kang
,
Q.
,
Yong
,
Y.
,
Hu
,
G. F.
,
Lu
,
X.
, and
Li
,
J. D.
,
2020
, “
Thermal Expansion Control of Composite Coatings on 42CrMo by Laser Cladding
,”
Surf. Coat. Technol.
,
397
, p.
125983
.
12.
Cui
,
T.
,
He
,
T. T.
, and
Du
,
S. M.
,
2022
, “
Effect of Laser Shock Processing on Microstructure and Tribological Behavior of GCr15 Bearing Steel
,”
Surf. Technol.
,
51
(
7
), pp.
353
362
.
13.
El-Labban
,
H. F.
,
Mahmoud
,
E. R. I.
, and
Al-Wadai
,
H.
,
2015
, “
Formation of VC-Composite Surface Layer on High C–Cr Bearing Tool Steel by Laser Surface Cladding
,”
J. Manuf. Processes
,
20
, pp.
190
197
.
14.
Xie
,
T. X.
,
Zhou
,
L.
,
Ding
,
H. H.
,
Zhu
,
Y.
,
Yang
,
W. B.
,
Xiao
,
Q.
,
Wang
,
W. J.
,
Guo
,
J.
, and
Liu
,
Q. Y.
,
2021
, “
Investigation on the Rolling Contact Fatigue Behaviours of Different Laser Cladding Materials on the Damaged Rail
,”
ASME J. Tribol.
,
143
(
5
), pp.
1
33
.
15.
Zhang
,
G. S.
,
Cui
,
H. Z.
, and
Cheng
,
G. Q.
,
2016
, “
Friction and Wear Behaviors of Gas Nitriding and Quenching Compound Treatment of GCr15 Steels
,”
China Surf. Eng.
,
29
(
6
), pp.
30
37
.
16.
Sweeney
,
C. A.
,
O’Brien
,
B.
,
Dunne
,
F. P. E.
,
McHugh
,
P. E.
, and
Leen
,
D. B.
,
2014
, “
Strain-Gradient Modelling of Grain Size Effects on Fatigue of CoCr Alloy
,”
Acta Mater.
,
78
, pp.
341
353
.
17.
Kattoura
,
M.
,
Mannava
,
S. R.
,
Qian
,
D.
, and
Vasudevan
,
V. K.
,
2017
, “
Effect of Laser Shock Peening on Residual Stress, Microstructure and Fatigue Behavior of ATI 718Plus Alloy
,”
Int. J. Fatigue
,
102
, pp.
121
134
.
18.
Wang
,
P.
,
Wang
,
D. F.
,
Duan
,
H. T.
, and
Zhang
,
Y. Z.
,
2022
, “
Microstructure and Tribological Performances of M50 Bearing Steel Processed by Ultrasonic Surface Rolling
,”
Tribol. Int.
,
175
, p.
107818
.
19.
Amanov
,
A.
,
Cho
,
I. S.
, and
Pyun
,
Y. S.
,
2016
, “
Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique
,”
Appl. Surf. Sci.
,
388
, pp.
185
195
.
20.
Ao
,
N.
,
Liu
,
D. X.
,
Xu
,
X. C.
,
Zhang
,
X. H.
, and
Liu
,
D.
,
2018
, “
Gradient Nanostructure Evolution and Phase Transformation of α Phase in Ti-6Al-4V Alloy Induced by Ultrasonic Surface Rolling Process
,”
Mater. Sci. Eng., A
,
742
, pp.
820
834
.
21.
Ye
,
Y. D.
,
Kure-Chu
,
S.-Z.
,
Sun
,
Z. Y.
,
Li
,
X. P.
,
Wang
,
H. B.
, and
Guo
,
Y.
,
2018
, “
Nanocrystallization and Enhanced Surface Mechanical Properties of Commercial Pure Titanium by Electropulsing-Assisted Ultrasonic Surface Rolling
,”
Mater. Des.
,
149
, pp.
214
227
.
22.
Qin
,
T. Y.
,
Ao
,
N.
,
Ren
,
X. Y.
,
Zhao
,
X.
, and
Wu
,
S. C.
,
2022
, “
Determination of Optimal Ultrasonic Surface Rolling Parameters to Enhance the Fatigue Strength of Railway Axle EA4T Steel
,”
Eng. Fract. Mech.
,
275
, p.
108831
.
23.
Wang
,
X. D.
,
Chen
,
L. Q.
,
Liu
,
P.
,
Lin
,
G. B.
, and
Ren
,
X. C.
,
2020
, “
Enhancement of Fatigue Endurance Limit Through Ultrasonic Surface Rolling Processing in EA4T Axle Stee
,”
Metals
,
10
(
6
), p.
830
.
24.
Zhang
,
Y. L.
,
Lai
,
F. Q.
,
Qu
,
S. G.
,
Liu
,
H. P.
, and
Jia
,
D. S.
,
2019
, “
Effect of Ultrasonic Surface Rolling on Microstructure and Rolling Contact Fatigue Behavior of 17Cr2Ni2MoVNb Steel
,”
Surf. Coat. Technol.
,
366
, pp.
321
330
.
25.
Ye
,
H.
,
Sun
,
X.
,
Liu
,
Y.
,
Rao
,
X. X.
, and
Gu
,
Q.
,
2019
, “
Effect of Ultrasonic Surface Rolling Process on Mechanical Properties and Corrosion Resistance of AZ31B Mg Alloy
,”
Surf. Coat. Technol.
,
372
, pp.
288
298
.
26.
Yin
,
M. G.
,
Yin
,
H. Z.
,
Zhang
,
Q. Q.
, and
Long
,
J. Q.
,
2022
, “
Effect of Ultrasonic Surface Rolling Process on the High Temperature Fretting Wear Behavior of Inconel 690 Alloy
,”
Wear
,
500
, p.
204347
.
27.
Huang
,
P. C.
,
Wang
,
Y. S.
,
Lin
,
J. H.
,
Cheng
,
Y. J.
,
Liu
,
F. Z.
, and
Qiu
,
Q. G.
,
2023
, “
Effect of Ultrasonic Rolling on Surface Integrity, Machining Accuracy, and Tribological Performance of Bearing Steels Under Different Process Schemes
,”
CIRP J. Manuf. Sci. Technol.
,
43
, pp.
143
157
.
28.
Qu
,
S. G.
,
Wang
,
J. T.
,
Hu
,
X. F.
,
Lai
,
F. Q.
,
Deng
,
Y. Q.
, and
Li
,
X. Q.
,
2021
, “
Effect of Ultrasonic Nanocrystalline Surface Modification Process on Fretting Wear Behavior of Laser Surface Textured 20CrMoH Steel
,”
Surf. Coat. Technol.
,
427
, p.
127827
.
29.
Ren
,
Z. J.
,
Lai
,
F. Q.
,
Qu
,
S. G.
,
Zhang
,
Y. L.
,
Li
,
X. Q.
, and
Yang
,
C.
,
2020
, “
Effect of Ultrasonic Surface Rolling on Surface Layer Properties and Fretting Wear Properties of Titanium Alloy Ti5Al4Mo6V2Nb1Fe
,”
Surf. Coat. Technol.
,
398
, p.
125612
.
30.
Yang
,
C.
, and
Li
,
M. Q.
,
2020
, “
3D Surface Morphology and Performance of TC17 Processed by Surface Severe Plastic Deformation
,”
Surf. Coat. Technol.
,
397
, p.
125995
.
31.
Meng
,
Y.
,
Deng
,
J. X.
,
Zhang
,
Y.
,
Wang
,
S. J.
,
Li
,
X. M.
,
Yue
,
H. Z.
, and
Ge
,
D. L.
,
2020
, “
Tribological Properties of Textured Surfaces Fabricated on AISI 1045 Steels by Ultrasonic Surface Rolling Under Dry Reciprocating Sliding
,”
Wear
,
460
, p.
203488
.
32.
Luo
,
X.
,
Ren
,
X. P.
,
Jin
,
Q.
, and
Hou
,
H. L.
,
2021
, “
Microstructural Evolution and Surface Integrity of Ultrasonic Surface Rolling in Ti6Al4V Alloy
,”
J. Mater. Res. Technol.
,
13
, pp.
1586
1598
.
33.
Xie
,
J. W.
,
Zhang
,
S. Q.
,
Sun
,
Y. G.
,
Hao
,
Y. X.
,
An
,
B. F.
,
Li
,
Q. L.
, and
Wang
,
C. A.
,
2020
, “
Microstructure and Mechanical Properties of High Entropy CrMnFeCoNi Alloy Processed by Electropulsing-Assisted Ultrasonic Surface Rolling
,”
Mater. Sci. Eng., A
,
795
, p.
140004
.
34.
Qing
,
L.
, and
Niels
,
H.
,
1995
, “
Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed During Cold Deformation
,”
Scr. Metall. Mater.
,
32
(
8
), pp.
1289
1295
.
35.
Wei
,
W. X.
,
Su
,
Y. F.
, and
Fan
,
H. Z.
,
2022
, “
Fretting Friction and Wear Characteristics and Damage Behaviors of Si3N4 Ceramic Balls Sliding Against Bearing Steel
,”
Tribology
,
42
(
1
), pp.
113
122
. .
36.
Li
,
G.
,
Qu
,
S. G.
,
Xie
,
M. X.
, and
Li
,
X. Q.
,
2017
, “
Effect of Ultrasonic Surface Rolling at Low Temperatures on Surface Layer Microstructure and Properties of HIP Ti-6Al-4V Alloy
,”
Surf. Coat. Technol.
,
316
, pp.
75
84
.
37.
Ren
,
Z. H.
,
Li
,
Z. H.
,
Zhou
,
S. H.
,
Wang
,
Y. H.
,
Zhang
,
L.
, and
Zhang
,
Z. T.
,
2022
, “
Study on Surface Properties of Ti-6Al-4V Titanium Alloy by Ultrasonic Rolling
,”
Simul. Modell. Pract. Theory
,
121
, p.
102643
.
38.
Chen
,
L. B.
,
Li
,
W.
,
Sun
,
Y. D.
, and
Luo
,
M.
,
2022
, “
Effect of Microstructure Evolution on the Mechanical Properties of a Mg-Y-Nd-Zr Alloy With a Gradient Nanostructure Produced Via Ultrasonic Surface Rolling Processing
,”
J. Alloys Compd.
,
923
, p.
166495
.
39.
Li
,
H. Y.
,
Sun
,
H. L.
,
Bowen
,
P.
, and
Knott
,
F.
,
2018
, “
Effects of Compressive Residual Stress on Short Fatigue Crack Growth in a Nickel-Based Superalloy
,”
Int. J. Fatigue
,
108
, pp.
53
61
.
40.
Wang
,
N.
,
Zhu
,
J. L.
,
Liu
,
B.
,
Zhang
,
X. C.
,
Zhang
,
J. M.
, and
Tu
,
S. T.
,
2021
, “
Influence of Ultrasonic Surface Rolling Process and Shot Peening on Fretting Fatigue Performance of Ti-6Al-4V
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
13
.
41.
Shakibi Nia
,
N.
,
Savall
,
C.
,
Creus
,
J.
,
Bourgon
,
J.
,
Girault
,
P.
,
Metsue
,
A.
,
Cohendoz
,
S.
, and
Feaugas
,
X.
,
2016
, “
On the Implication of Solute Contents and Grain Boundaries on the Hall-Petch Relationship of Nanocrystalline Ni-W Alloys
,”
Mater. Sci. Eng., A
,
678
, pp.
204
214
.
42.
Dang
,
J. Q.
,
An
,
Q. L.
,
Lian
,
G. H.
,
Zuo
,
Z. Y.
,
Li
,
Y. G.
,
Wang
,
H. W.
, and
Chen
,
M.
,
2021
, “
Surface Modification and Its Effect on the Tensile and Fatigue Properties of 300M Steel Subjected to Ultrasonic Surface Rolling Process
,”
Surf. Coat. Technol.
,
422
, pp.
127566
127584
.
43.
Zhang
,
F.
,
Yin
,
M. G.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of Micro-Arc Oxidation Coating Fabricated on AZ91magnesium Alloy
,”
ASME J. Tribol.
,
144
(
4
), p. 041703.
44.
Meifal
,
R.
, and
Masaaki
,
O.
,
2007
, “
Effect of Surface Topography on Mode-Coupling Model of Dry Contact Sliding Systems
,”
J. Sound Vib.
,
308
(
3
), pp.
721
734
.
45.
Esteves
,
M.
,
Ramalho
,
A.
, and
Ramos
,
F.
,
2017
, “
Electrical Performance of Textured Stainless Steel Under Fretting
,”
Tribol. Int.
,
110
, pp.
41
51
.
46.
Huq
,
M. Z.
, and
Celis
,
J.-P.
,
2002
, “
Expressing Wear Rate in Sliding Contacts Based on Dissipated Energy
,”
Wear
,
752
(
5
), pp.
375
383
.
47.
Wu
,
J. X.
,
Deng
,
J. X.
,
Lu
,
Y.
,
Zhang
,
Z. H.
,
Meng
,
Y.
,
Wang
,
R.
, and
Sun
,
Q. H.
,
2022
, “
Effect of Textures Fabricated by Ultrasonic Surface Rolling on Dry Friction and Wear Properties of GCr15 Steel
,”
J. Manuf. Processes
,
84
, pp.
798
814
.
48.
Zhang
,
Q. L.
,
Hu
,
Z. Q.
,
Su
,
W. W.
,
Su
,
H. L.
,
Liu
,
C. X.
,
Yang
,
Y. L.
, and
Qi
,
X. W.
,
2017
, “
Microstructure and Surface Properties of 17-4PH Stainless Steel by Ultrasonic Surface Rolling Technology
,”
Surf. Coat. Technol.
,
321
, pp.
64
73
.
49.
Rustamov
,
I.
,
Zhang
,
G. L.
,
Skotnikova
,
M.
,
Wang
,
Y. M.
, and
Wang
,
Z. X.
,
2019
, “
Fretting Wear Behavior and Damage Mechanisms of Inconel X-750 Alloy in Dry Contact Condition
,”
ASME J. Tribol.
,
141
(
4
), p.
041603
.
50.
Praveenkumar
,
K.
,
Swaroop
,
S.
, and
Manivasagam
,
G.
,
2022
, “
Effect of Multiple Laser Peening on Microstructural, Fatigue and Fretting-Wear Behaviour of Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
443
, p.
128611
.
51.
Zhang
,
P.
,
Zeng
,
L. C.
,
Mi
,
X.
,
Lu
,
Y.
,
Luo
,
S. Y.
, and
Zhai
,
W. Z.
,
2021
, “
Comparative Study on the Fretting Wear Property of 7075 Aluminum Alloys Under Lubricated and Dry Conditions
,”
Wear
,
474
, p.
203760
.
52.
Liu
,
Y. G.
,
Li
,
M. Q.
, and
Liu
,
H. J.
,
2016
, “
Surface Nanocrystallization and Gradient Structure Developed in the Bulk TC4 Alloy Processed by Shot Peening
,”
J. Alloys Compd.
,
685
, pp.
186
193
.
53.
Amanov
,
A.
, and
Umarov
,
R.
,
2018
, “
The Effects of Ultrasonic Nanocrystal Surface Modification Temperature on the Mechanical Properties and Fretting Wear Resistance of Inconel 690 Alloy
,”
Appl. Surf. Sci.
,
441
, pp.
515
529
.
You do not currently have access to this content.