Abstract

Ti6Al4V alloy is widely used in several engineering applications, especially in the biomedical field, because of its excellent biocompatibility, mechanical strength, and corrosion resistance. However, the Ti6Al4V alloy possesses poor tribological properties, which may lead to premature failure of the implants. From the available literature, it has been found that the wear properties of direct metal laser sintering (DMLS)-produced Ti6Al4V alloy in different lubrications have not been explored in detail. The present study tries to evaluate the tribological behavior of DMLS-manufactured Ti6Al4V alloy in different biofluid conditions, such as physiologic saline solution, simulated body fluid, and phosphate-buffered saline against an Al2O3 ball. Apart from the fluids, the effect of different load conditions like 5 N, 10 N, and 20 N at 0.157 m/s (500 rpm @ 6 mm track dia.) was also evaluated on the ball-on-disk tribometer. The experimental results have shown that the DMLS-produced Ti6AL4V alloy yields a 23% lower coefficient of friction and a 68% lower wear rate as compared to the cast Ti6Al4V. Additionally, cast and DMLS-produced Ti6Al4V alloys have followed the same wear trend for biofluids phosphate-buffered saline > simulated body fluid > physiologic saline solution. Analysis of variance (on the obtained results), field emission scanning electron microscopy, and electron dispersive spectroscopy were performed to investigate the reason behind the obtained wear behavior. The results have confirmed that the lesser wear of DMLS-produced Ti6Al4V is mainly due to its hydrophilic nature and higher hardness. Additionally, adhesion, abrasion, and oxidation were found to be the dominant wear mechanisms in both types of samples.

References

1.
Bandyopadhyay
,
A.
,
Espana
,
F.
,
Balla
,
V. K.
,
Bose
,
S.
,
Ohgami
,
Y.
, and
Davies
,
N. M.
,
2010
, “
Influence of Porosity on Mechanical Properties and In Vivo Response of Ti6Al4V Implants
,”
Acta Biomater.
,
6
(
4
), pp.
1640
1648
.
2.
Pendleton
,
A.
,
Kar
,
P.
,
Kundu
,
S.
,
Houssamy
,
S.
, and
Liang
,
H.
,
2010
, “
Effects of Nanostructured Additives on Boundary Lubrication for Potential Artificial Joint Applications
,”
ASME J. Tribol.
,
132
(
3
), p.
031201
.
3.
Choubey
,
A.
,
Basu
,
B.
, and
Balasubramaniam
,
R.
,
2004
, “
Tribological Behavior of Ti-Based Alloys in Simulated Body Fluid Solution at Fretting Contacts
,”
Mater. Sci. Eng. A
,
379
(
1–2
), pp.
234
239
.
4.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2020
, “
Experimental Investigations on the Tribological Performance of Electric Discharge Alloyed Ti-6Al-4V at 200–600 °C
,”
ASME J. Tribol.
,
142
(
6
), p.
061702
.
5.
Laraia
,
K.
,
Leone
,
N.
,
MacDolanald
,
R.
, and
Blanchet
,
T. A.
,
2006
, “
Effect of Water and Serum Absorption on Wear of Unirradiated and Crosslinked UHMWPE Orthopedic Bearing Materials
,”
Tribol. Trans.
,
49
(
3
), pp.
338
346
.
6.
Sudeep
,
U.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2015
, “
Performance of Lubricated Rolling/Sliding Concentrated Contacts With Surface Textures: A Review
,”
ASME J. Tribol.
,
137
(
3
), p.
031501
.
7.
Sharma
,
M. D.
, and
Sehgal
,
R.
,
2012
, “
Dry Sliding Friction and Wear Behavior of Titanium Alloy (Ti-6Al-4V)
,”
Tribol. Online
,
7
(
2
), pp.
87
95
.
8.
Guleryuz
,
H.
, and
Cimenoglu
,
H.
,
2004
, “
Effect of Thermal Oxidation on Corrosion and Corrosion-Wear Behavior of a Ti-6Al-4V Alloy
,”
Biomaterials
,
25
(
16
), pp.
3325
3333
.
9.
Luo
,
Y.
,
Yang
,
L.
, and
Tian
,
M.
,
2013
, “
Influence of Bio-Lubricants on the Tribological Properties of Ti6Al4V Alloy
,”
J. Bionic Eng.
,
10
(
1
), pp.
84
89
.
10.
Wang
,
C.
,
Zhang
,
G.
,
Li
,
Z.
,
Zeng
,
X.
,
Xu
,
Y.
,
Zhao
,
S.
,
Hu
,
H.
,
Zhang
,
Y.
, and
Ren
,
T.
,
2019
, “
Tribological Behavior of Ti-6Al-4V Against Cortical Bone in Different Biolubricants
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
460
471
.
11.
Khun
,
N. W.
,
Toh
,
W. Q.
,
Tan
,
X. P.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Tribological Properties of Three-Dimensionally Printed Ti-6Al-4V Material via Electron Beam Melting Process Tested Against 100Cr6 Steel Without and With Hank’s Solution
,”
ASME J. Tribol.
,
140
(
6
), p.
061606
.
12.
Ashok Raj
,
J.
,
Pottirayil
,
A.
, and
Kailas
,
S. V.
,
2017
, “
Dry Sliding Wear Behavior of Ti-6Al-4V Pin Against SS316L Disk at Constant Contact Pressure
,”
ASME J. Tribol.
,
139
(
2
), p.
021603
.
13.
Kaya
,
G.
,
Yildiz
,
F.
, and
Hacisalihoglu
,
A.
,
2019
, “
Characterization of the Structural and Tribological Properties of Medical Ti6Al4V Alloy Produced in Different Production Parameters Using Selective Laser Melting
,”
3D Print. Addit. Manuf.
,
6
(
5
), pp.
253
261
.
14.
Ju
,
J.
,
Zhou
,
Y.
,
Wang
,
K.
,
Liu
,
Y.
,
Li
,
J.
,
Kang
,
M.
, and
Wang
,
J.
,
2020
, “
Tribological Investigation of Additive Manufacturing Medical Ti6Al4V Alloys Against Al2O3 Ceramic Balls in Artificial Saliva
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103602
.
15.
Liu
,
Q.
,
Kouediatouka
,
A. N.
,
Jiang
,
S.
,
Yuan
,
H.
,
Li
,
J.
, and
Dong
,
G.
,
2023
, “
Laser Com-Texture on Ti6Al4V Surface for Lubricant Transportation to Improve Tribological Properties
,”
ASME J. Tribol.
,
145
(
3
), p.
031705
.
16.
Cvijovic-Alagic
,
I.
,
Cvijovic
,
Z.
,
Mitrovic
,
S.
,
Panic
,
V.
, and
Rakin
,
M.
,
2011
, “
Wear and Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys in Simulated Physiological Solution
,”
Corros. Sci.
,
53
(
2
), pp.
796
808
.
17.
Geetha
,
M.
,
Singh
,
A. K.
,
Asokamani
,
R.
, and
Gogia
,
A. K.
,
2009
, “
Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review
,”
Prog. Mater. Sci.
,
54
(
3
), pp.
397
425
.
18.
Scholes
,
S. C.
, and
Unsworth
,
A.
,
2006
, “
The Effects of Proteins on the Friction and Lubrication of Artificial Joints
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
220
(
6
), pp.
687
693
.
19.
Stojanovic
,
B.
,
Vencl
,
A.
,
Bobic
,
I.
,
Miladinovic
,
S.
, and
Skerlic
,
J.
,
2018
, “
Experimental Optimisation of the Tribological Behavior of Al/SiC/Gr Hybrid Composites Based on Taguchi’s Method and Artificial Neural Network
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
40
(
6
), p.
311
.
20.
Mondal
,
P.
,
Das
,
A.
,
Wazeer
,
A.
, and
Karmakar
,
A.
,
2022
, “
Biomedical Porous Scaffold Fabrication Using Additive Manufacturing Technique: Porosity, Surface Roughness and Process Parameters Optimization
,”
Int. J. Light. Mater. Manuf.
,
5
(
3
), pp.
384
396
.
21.
Bartolomeu
,
F.
,
Buciumeanu
,
M.
,
Pinto
,
E.
,
Alves
,
N.
,
Silva
,
F. S.
,
Carvalho
,
O.
, and
Miranda
,
G.
,
2017
, “
Wear Behavior of Ti6Al4V Biomedical Alloys Processed by Selective Laser Melting, Hot Pressing and Conventional Casting
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
27
(
4
), pp.
829
838
.
22.
Sampaio
,
M.
,
Buciumeanu
,
M.
,
Henriques
,
B.
,
Silva
,
F. S.
,
Souza
,
J. C. M.
, and
Gomes
,
J. R.
,
2016
, “
Tribocorrosion Behavior of Veneering Biomedical PEEK to Ti6Al4V Structures
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
123
130
.
23.
Li
,
X. X.
,
Zhou
,
Y.
,
Ji
,
X. L.
,
Li
,
Y. X.
, and
Wang
,
S. Q.
,
2015
, “
Effects of Sliding Velocity on Tribo-Oxides and Wear Behavior of Ti–6Al–4V Alloy
,”
Tribol. Int.
,
91
, pp.
228
234
.
24.
Dong
,
H.
, and
Bell
,
T.
,
1999
, “
Tribological Behavior of Alumina Sliding Against Ti6Al4V in Unlubricated Contact
,”
Wear
,
225–229
(
PART II
), pp.
874
884
.
25.
Goyal
,
V.
,
Sharma
,
S. K.
, and
Kumar
,
B. V. M.
,
2015
, “
Effect of Lubrication on Tribological Behavior of Martensitic Stainless Steel
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
1082
1091
.
26.
Gangwar
,
K.
,
Jayachandran
,
S.
,
Sahu
,
A.
,
Singh
,
A.
, and
Palani
,
I. A.
,
2022
, “
Influence of Pre-Strain on Attributes of Ni-Rich NiTi/Kapton Polyimide Bimorph for Flexible Mirrors
,”
Sens. Actuators A Phys.
,
341
, p.
113607
.
27.
Balla
,
V. K.
,
Soderlind
,
J.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2014
, “
Microstructure, Mechanical and Wear Properties of Laser Surface Melted Ti6Al4V Alloy
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
335
344
.
28.
Zhang
,
S.
,
Wei
,
Q.
,
Cheng
,
L.
,
Li
,
S.
, and
Shi
,
Y.
,
2014
, “
Effects of Scan Line Spacing on Pore Characteristics and Mechanical Properties of Porous Ti6Al4V Implants Fabricated by Selective Laser Melting
,”
Mater. Des.
,
63
, pp.
185
193
.
29.
Alemanno
,
F.
,
Peretti
,
V.
,
Tortora
,
A.
, and
Spriano
,
S.
,
2020
, “
Tribological Behavior of Ti or Ti Alloy vs. Zirconia in Presence of Artificial Saliva
,”
Coatings
,
10
(
9
), p.
851
.
30.
Zhang
,
Z.
,
Li
,
Z.
,
Pan
,
S.
, and
Chai
,
X.
,
2022
, “
Enhanced Strength and High-Temperature Wear Resistance of Ti6Al4V Alloy Fabricated by Laser Solid Forming
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111011
.
31.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
32.
Injeti
,
V. S. Y.
,
Nune
,
K. C.
,
Reyes
,
E.
,
Yue
,
G.
,
Li
,
S. J.
, and
Misra
,
R. D. K.
,
2019
, “
A Comparative Study on the Tribological Behavior of Ti-6Al-4V and Ti-24Nb-4Zr-8Sn Alloys in Simulated Body Fluid
,”
Mater. Technol.
,
34
(
5
), pp.
270
284
.
33.
Attar
,
H.
,
Prashanth
,
K. G.
,
Chaubey
,
A. K.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2015
, “
Comparison of Wear Properties of Commercially Pure Titanium Prepared by Selective Laser Melting and Casting Processes
,”
Mater. Lett.
,
142
, pp.
38
41
.
34.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
.
35.
Liu
,
L.
,
Yang
,
C.
,
Zhou
,
J.
,
Garmestani
,
H.
, and
Dastan
,
D.
,
2021
, “
Study on Wear Model and Adhesive Wear Mechanism of Brass Under Boundary Lubrication
,”
Prot. Met. Phys. Chem. Surf.
,
57
(
2
), pp.
367
373
.
36.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Kulkarni
,
N. S.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
37.
Zhang
,
H.
, and
Etsion
,
I.
,
2021
, “
Evolution of Adhesive Wear and Friction in Elastic-Plastic Spherical Contact
,”
Wear
,
478–479
, p.
203915
.
38.
Ju
,
J.
,
Zhao
,
C.
,
Kang
,
M.
,
Li
,
J.
,
He
,
L.
,
Wang
,
C.
,
Li
,
J.
,
Fu
,
H.
, and
Wang
,
J.
,
2021
, “
Effect of Heat Treatment on Microstructure and Tribological Behavior of Ti–6Al–4V Alloys Fabricated by Selective Laser Melting
,”
Tribol. Int.
,
159
, p.
106996
.
39.
Ming
,
Q.
,
Yong-zhen
,
Z.
,
Jian-heng
,
Y.
, and
Jun
,
Z.
,
2006
, “
Microstructure and Tribological Characteristics of Ti-6Al-4V Alloy Against GCr15 Under High Speed and dry Sliding
,”
Mater. Sci. Eng. A
,
434
(
1–2
), pp.
71
75
.
40.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
41.
Song
,
B.
,
Dong
,
S.
,
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V
,”
Mater. Des.
,
35
, pp.
120
125
.
42.
Hutching I
,
M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth Heinemann, Elsevier Science
,
New York
.
43.
Rathi
,
S.
, and
Verma
,
A.
,
2019
,
Material Selection for Single-Tooth Crown Restorations
,
Elsevier Inc.
,
Oxford, UK
.
44.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
Experimental Study of Adhesive Static Friction in a Spherical Elastic-Plastic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021401
.
45.
Etsion
,
I.
,
Levinson
,
O.
,
Halperin
,
G.
, and
Varenberg
,
M.
,
2005
, “
Experimental Investigation of the Elastic-Plastic Contact Area and Static Friction of a Sphere on Flat
,”
ASME J. Tribol.
,
127
(
1
), pp.
47
50
.
46.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
47.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
48.
Pawlak
,
Z.
,
Urbaniak
,
W.
, and
Oloyede
,
A.
,
2011
, “
The Relationship Between Friction and Wettability in Aqueous Environment
,”
Wear
,
271
(
9–10
), pp.
1745
1749
.
49.
Karimi
,
S.
, and
Alfantazi
,
A. M.
,
2013
, “
Electrochemical Corrosion Behavior of Orthopedic Biomaterials in Presence of Human Serum Albumin
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
C206
C214
.
50.
Carapeto
,
A. P.
,
Serro
,
A. P.
,
Nunes
,
B. M.
,
Martins
,
M. C.
,
Todorovic
,
S.
,
Duarte
,
M. T.
,
André
,
V.
,
Colaço
,
R.
, and
Saramago
,
B.
,
2010
, “
Characterization of Two DLC Coatings for Joint Prosthesis: The Role of Albumin on the Tribological Behavior
,”
Surf. Coatings Technol.
,
204
(
21–22
), pp.
3451
3458
.
51.
Kumari
,
R.
,
Scharnweber
,
T.
,
Pfleging
,
W.
,
Besser
,
H.
, and
Majumdar
,
J. D.
,
2015
, “
Laser Surface Textured Titanium Alloy (Ti-6Al-4V)—Part II—Studies on Bio-Compatibility
,”
Appl. Surf. Sci.
,
357
, pp.
750
758
.
52.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2021
, “
Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review
,”
ASME J. Tribol.
,
143
(
4
), p.
040801
.
53.
Sanjeev
,
K. C.
,
Nezhadfar
,
P. D.
,
Phillips
,
C.
,
Kennedy
,
M. S.
,
Shamsaei
,
N.
, and
Jackson
,
R. L.
,
2019
, “
Tribological Behavior of 17–4 PH Stainless Steel Fabricated by Traditional Manufacturing and Laser-Based Additive Manufacturing Methods
,”
Wear
,
440–441
, p.
203100
.
You do not currently have access to this content.