Abstract

Graphene/fullerene carbon–based nanoparticles exhibit excellent tribological properties in solid–liquid two-phase lubrication systems. However, the tribological mechanism still lacks profound insights into dynamic friction processes at the atomic scale. In this paper, the friction reduction and anti-wear mechanism of graphene/fullerene nanoparticles and the synergistic lubrication effect of the binary additive system were investigated by molecular dynamics simulations and tribological experiments. The friction performance was predicted based on six machine learning algorithms. The results indicated that in fluid lubrication, graphene promoted “liquid–liquid” interlayer sliding, whereas fullerene facilitated “solid–liquid” interface sliding, resulting in a decrease or increase in friction force. Under boundary lubrication, graphene/fullerene nanoparticles were adsorbed and anchored at the metal interface to form a physical protective film, which improved the bearing capacity of the lubricating oil film, transformed the direct contact between asperities into interlayer sliding of graphene and roll–slide polishing, filling, and repairing of fullerene, thus improving the frictional wear of the lubrication system as well as the friction temperature rise and stress concentration of the asperities. Furthermore, six machine learning algorithms showed low error and high precision, and the coefficient of determination was greater than 0.9, indicating that all models had good prediction and generalization capabilities, fully demonstrating the feasibility of combining molecular simulation and machine learning applications in the field of tribology.

References

1.
Ewen
,
J. P.
,
Echeverri Restrepo
,
S.
,
Morgan
,
N.
, and
Dini
,
D.
,
2017
, “
Nonequilibrium Molecular Dynamics Simulations of Stearic Acid Adsorbed on Iron Surfaces With Nanoscale Roughness
,”
Tribol. Int.
,
107
, pp.
264
273
.
2.
Qiu
,
F.
,
Song
,
H.
,
Feng
,
W.
,
Yang
,
Z.
,
Zhang
,
F.
, and
Hu
,
X.
,
2023
, “
Molecular Dynamics Simulations of the Interaction Between Graphene and Lubricating Oil Molecules
,”
Tribol. Lett.
,
71
(
2
), p.
33
.
3.
Konishi
,
M.
, and
Washizu
,
H.
,
2020
, “
Understanding the Effect of the Base Oil on the Physical Adsorption Process of Organic Additives Using Molecular Dynamics
,”
Tribol. Int.
,
149
, p.
105568
.
4.
Li
,
X.
,
Zhang
,
D.
,
Xu
,
X.
, and
Lee
,
K.-R.
,
2020
, “
Tailoring the Nanostructure of Graphene as Oil-Based Additive: Toward Synergistic Lubrication With Amorphous Carbon Film
,”
ACS Appl. Mater. Int.
,
12
(
38
), pp.
43320
43330
.
5.
Ge
,
X.
,
Chai
,
Z.
,
Shi
,
Q.
,
Liu
,
Y.
, and
Wang
,
W.
,
2023
, “
Graphene Superlubricity: A Review
,”
Friction.
,
11
(
11
), pp.
1953
1973
.
6.
Li
,
P.
,
Ji
,
L.
,
Li
,
H.
,
Chen
,
L.
,
Liu
,
X.
,
Zhou
,
H.
, and
Chen
,
J.
,
2022
, “
Role of Nanoparticles in Achieving Macroscale Superlubricity of Graphene/Nano-SiO2 Particle Composites
,”
Friction
,
10
(
9
), pp.
1305
1316
.
7.
Wang
,
Y.
,
Guo
,
J.
,
Gao
,
K.
,
Zhang
,
B.
,
Liang
,
A.
, and
Zhang
,
J.
,
2014
, “
Understanding the Ultra-Low Friction Behavior of Hydrogenated Fullerene-Like Carbon Films Grown With Different Flow Rates of Hydrogen Gas
,”
Carbon
,
77
, pp.
518
524
.
8.
Zhang
,
Q.
,
Diao
,
D.
, and
Kubo
,
M.
,
2015
, “
Nanoscratching of Multi-Layer Graphene by Molecular Dynamics Simulations
,”
Tribol. Int.
,
88
, pp.
85
88
.
9.
Wu
,
L.
,
Gu
,
L.
,
Xie
,
Z.
,
Zhang
,
C.
, and
Song
,
B.
,
2017
, “
Improved Tribological Properties of Si3N4/GCr15 Sliding Pairs With Few Layer Graphene as Oil Additives
,”
Ceram. Int.
,
43
(
16
), pp.
14218
14224
.
10.
Liñeira del Río
,
J. M.
,
Guimarey
,
M. J. G.
,
Prado
,
J. I.
,
Lugo
,
L.
,
López
,
E. R.
, and
Comuñas
,
M. J. P.
,
2022
, “
Improving the Tribological Performance of a Biodegradable Lubricant Adding Graphene Nanoplatelets as Additives
,”
J. Mol. Liq.
,
345
, p.
117797
.
11.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Abdelkareem
,
M. A. A.
,
Gulzar
,
M.
, and
Elsheikh
,
A. H.
,
2018
, “
Novel Approach of the Graphene Nanolubricant for Energy Saving via Anti-Friction/Wear in Automobile Engines
,”
Tribol. Int.
,
124
, pp.
209
229
.
12.
Miura
,
K.
,
Kamiya
,
S.
, and
Sasaki
,
N.
,
2003
, “
C60 Molecular Bearings
,”
Phys. Rev. Lett.
,
90
(
5
), p.
055509
.
13.
Lee
,
J.
,
Cho
,
S.
,
Hwang
,
Y.
,
Cho
,
H.-J.
,
Lee
,
C.
,
Choi
,
Y.
,
Ku
,
B.-C.
, et al
,
2009
, “
Application of Fullerene-Added Nano-Oil for Lubrication Enhancement in Friction Surfaces
,”
Tribol. Int.
,
42
(
3
), pp.
440
447
.
14.
Lee
,
J.
,
Cho
,
S.
,
Hwang
,
Y.
,
Lee
,
C.
, and
Kim
,
S. H.
,
2007
, “
Enhancement of Lubrication Properties of Nano-Oil by Controlling the Amount of Fullerene Nanoparticle Additives
,”
Tribol. Lett.
,
28
(
2
), pp.
203
208
.
15.
Yao
,
Y.
,
Wang
,
X.
,
Guo
,
J.
,
Yang
,
X.
, and
Xu
,
B.
,
2008
, “
Tribological Property of Onion-Like Fullerenes as Lubricant Additive
,”
Mater. Lett.
,
62
(
16
), pp.
2524
2527
.
16.
Lee
,
K.
,
Hwang
,
Y.
,
Cheong
,
S.
,
Kwon
,
L.
,
Kim
,
S.
, and
Lee
,
J.
,
2009
, “
Performance Evaluation of Nano-Lubricants of Fullerene Nanoparticles in Refrigeration Mineral Oil
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e128
e131
.
17.
Srivastava
,
I.
,
Kotia
,
A.
,
Ghosh
,
S. K.
, and
Ali
,
M. K. A.
,
2021
, “
Recent Advances of Molecular Dynamics Simulations in Nanotribology
,”
J. Mol. Liq.
,
335
, p.
116154
.
18.
Berman
,
D.
,
Deshmukh
,
S. A.
,
Sankaranarayanan
,
S. K. R. S.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2015
, “
Macroscale Superlubricity Enabled by Graphene Nanoscroll Formation
,”
Science
,
348
(
6239
), pp.
1118
1122
.
19.
Van Sang
,
L.
,
Sugimura
,
N.
,
Khajeh
,
K.
, and
Washizu
,
H.
,
2022
, “
Solid Lubricants of Combined Graphene and Iron Nanoparticles for Study of Friction and Stability
,”
Langmuir
,
38
(
5
), pp.
1860
1868
.
20.
Van Sang
,
L.
,
Sugimura
,
N.
, and
Washizu
,
H.
,
2022
, “
Graphene as Solid Lubricant Vertically Buried Into Iron Contact Surface by Annealing for Superlubricity
,”
Tribol. Int.
,
165
, p.
107288
.
21.
Li
,
C.
,
Tang
,
W.
,
Tang
,
X.-Z.
,
Yang
,
L.
, and
Bai
,
L.
,
2022
, “
A Molecular Dynamics Study on the Synergistic Lubrication Mechanisms of Graphene/Water-Based Lubricant Systems
,”
Tribol. Int.
,
167
, p.
107356
.
22.
Li
,
X.
,
Xu
,
X.
,
Zhou
,
Y.
,
Lee
,
K.-R.
, and
Wang
,
A.
,
2019
, “
Insights Into Friction Dependence of Carbon Nanoparticles as Oil-Based Lubricant Additive at Amorphous Carbon Interface
,”
Carbon
,
150
, pp.
465
474
.
23.
Wang
,
L.
,
Gong
,
P.
,
Li
,
W.
,
Luo
,
T.
, and
Cao
,
B.
,
2020
, “
Mono-Dispersed Ag/Graphene Nanocomposite as Lubricant Additive to Reduce Friction and Wear
,”
Tribol. Int.
,
146
, p.
106228
.
24.
Ren
,
B.
,
Gao
,
L.
,
BotaoXie, Li
,
M.
,
Zhang
,
S.
,
Zu
,
G.
, and
Ran
,
X.
,
2020
, “
Tribological Properties and Anti-Wear Mechanism of ZnO@Graphene Core-Shell Nanoparticles as Lubricant Additives
,”
Tribol. Int.
,
144
, p.
106114
.
25.
Min
,
C.
,
He
,
Z.
,
Song
,
H.
,
Liu
,
D.
,
Jia
,
W.
,
Qian
,
J.
,
Jin
,
Y.
, and
Guo
,
L.
,
2019
, “
Fabrication of Novel CeO2/GO/CNTs Ternary Nanocomposites With Enhanced Tribological Performance
,”
Appl. Sci.
,
9
(
1
), p.
170
.
26.
Hasan
,
M. S.
,
Wong
,
T.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models
,”
Tribol. Int.
,
170
, p.
107527
.
27.
Wang
,
S.
,
Liang
,
Z.
,
Liu
,
L.
,
Wan
,
P.
,
Qian
,
Q.
,
Chen
,
Y.
,
Jia
,
S.
, and
Chen
,
D.
,
2023
, “
Artificial Intelligence-Based Rapid Design of Grease With Chemically Functionalized Graphene and Carbon Nanotubes as Lubrication Additives
,”
Langmuir
,
39
(
1
), pp.
647
658
.
28.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
29.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2021
, “
Triboinformatic Modeling of Dry Friction and Wear of Aluminum Base Alloys Using Machine Learning Algorithms
,”
Tribol. Int.
,
161
, p.
107065
.
30.
Li
,
T.
,
Wu
,
J.
,
Ge
,
C.
,
Wang
,
L.
,
Yu
,
Y.
,
Ma
,
X.
,
Qiao
,
Z.
, and
Tang
,
H.
,
2023
, “
Molecular Dynamics Investigation on Micro-Friction Behavior of Cylinder Liner-Piston Ring Assembly
,”
Tribol. Lett.
,
71
(
3
), p.
78
.
31.
He
,
X.
,
Bai
,
Q.
,
Shen
,
R.
,
Zhang
,
F.
, and
Guo
,
Y.
,
2020
, “
The Evolution of Configuration and Final State of Graphene on Rough Iron Surface
,”
Appl. Surf. Sci.
,
530
, p.
147084
.
32.
Shi
,
J.
,
Zhang
,
M.
,
Liu
,
J.
,
Liu
,
G.
, and
Zhou
,
F.
,
2021
, “
Molecular Dynamics Simulations of Adsorption Behavior of Organic Friction Modifiers on Hydrophilic Silica Surfaces Under the Effects of Surface Coverage and Contact Pressure
,”
Tribol. Int.
,
156
, p.
106826
.
33.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in‘t Veld
,
P. J.
, et al
,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.
34.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
35.
Hu
,
C.
,
Bai
,
M.
,
Lv
,
J.
, and
Li
,
X.
,
2015
, “
Molecular Dynamics Simulation of Mechanism of Nanoparticle in Improving Load-Carrying Capacity of Lubricant Film
,”
Comput. Mater. Sci.
,
109
, pp.
97
103
.
36.
Xia
,
L.
,
Long
,
J.
,
Zhao
,
Y.
,
Wu
,
Z.
,
Dai
,
Z.
, and
Wang
,
L.
,
2018
, “
Molecular Dynamics Simulation on the Aggregation of Lubricant Oxidation Products
,”
Tribol. Lett.
,
66
(
3
), p.
104
.
37.
Guo
,
W.
,
Bai
,
Q.
,
Dou
,
Y.
,
Chen
,
S.
, and
Wang
,
H.
,
2022
, “
Molecular Dynamics Simulation of Frictional Strengthening Behavior of Graphene on Stainless Steel Substrate
,”
Carbon
,
197
, pp.
183
191
.
38.
Song
,
J.
, and
Zhao
,
G.
,
2019
, “
A Molecular Dynamics Study on Water Lubrication of PTFE Sliding Against Copper
,”
Tribol. Int.
,
136
, pp.
234
239
.
39.
Qiu
,
F.
,
Feng
,
W.
,
Song
,
H.
,
Yang
,
Z.
,
Zhang
,
F.
, and
Hu
,
X.
,
2023
, “
On the Structure–Activity Relationship of Glyceryl Oleate Friction Modifiers and Its Synergistic Mechanism on Phosphate Ester Antiwear Additives
,”
Tribol. Lett.
,
71
(
3
), p.
90
.
40.
Sun
,
K.
,
Hu
,
Y.
,
Dong
,
Y.
,
Yao
,
L.
,
Song
,
R.
, and
Xu
,
Y.
,
2023
, “
Tribological Behavior of Thermal- and pH-Sensitive Microgels Under Steel/CoCrMo Alloy Contacts
,”
Friction
,
11
(
4
), pp.
602
616
.
41.
Xu
,
Y.
,
Liu
,
Z.
,
Dearn
,
K. D.
,
Dong
,
Y.
,
You
,
T.
, and
Hu
,
X.
,
2019
, “
Thermo-Tribological Behaviour of Microgels for Improved Aqueous Lubrication for Steel/UHMWPE Contact
,”
Tribol. Int.
,
130
, pp.
63
73
.
42.
Parikh
,
H. H.
, and
Gohil
,
P. P.
,
2017
, “
Experimental Investigation and Prediction of Wear Behavior of Cotton Fiber Polyester Composites
,”
Friction
,
5
(
2
), pp.
183
193
.
43.
Altay
,
O.
,
Gurgenc
,
T.
,
Ulas
,
M.
, and
Özel
,
C.
,
2020
, “
Prediction of Wear Loss Quantities of Ferro-Alloy Coating Using Different Machine Learning Algorithms
,”
Friction
,
8
(
1
), pp.
107
114
.
44.
Hou
,
Y.
,
Wang
,
X.
,
Xu
,
B.
,
Geng
,
Y.
,
Li
,
Q.
, and
Yang
,
D.
,
2023
, “
Prediction of Frictional Moment of Cylindrical Roller Bearing Using Experimental Data-Driven Artificial Neural Networks
,”
ASME J. Tribol.
,
145
(
9
), p.
091103
.
45.
Zhu
,
Y.
,
Yuan
,
Z.
,
Khonsari
,
M. M.
,
Zhao
,
S.
, and
Yang
,
H.
,
2023
, “
Small-Dataset Machine Learning for Wear Prediction of Laser Powder Bed Fusion Fabricated Steel
,”
ASME J. Tribol.
,
145
(
9
), p.
091101
.
46.
Yu
,
H.
,
Chen
,
H.
,
Zheng
,
Z.
,
Qiao
,
D.
,
Feng
,
D.
,
Gong
,
Z.
, and
Dong
,
G.
,
2023
, “
Effect of Functional Groups on Tribological Properties of Lubricants and Mechanism Investigation
,”
Friction
,
11
(
6
), pp.
911
926
.
47.
Zheng
,
X.
,
Su
,
L.
,
Deng
,
G.
,
Zhang
,
J.
,
Zhu
,
H.
, and
Tieu
,
A. K.
,
2021
, “
Study on Lubrication Characteristics of C4-Alkane and Nanoparticle During Boundary Friction by Molecular Dynamics Simulation
,”
Metals
,
11
(
9
), p.
1464
.
48.
Jiang
,
H.
,
Yu
,
Y.
,
Tang
,
W.
,
Zhou
,
R.
,
Shi
,
W.
, and
Bai
,
L.
,
2022
, “
A Molecular Dynamics Study on the Lubrication Performance of Ionic Liquids
,”
J. Mater. Sci.
,
57
(
40
), pp.
18874
18888
.
49.
Zhang
,
L.
,
Lu
,
B.
,
Wu
,
Y.
,
Wang
,
J.
,
Zhang
,
X.
,
Wang
,
L.
, and
Xi
,
D.
,
2020
, “
Molecular Dynamics Simulation and Experimental Study on the Lubrication of Graphene Additive Films
,”
Proc. Inst. Mech. Eng. Part J. -J. Eng. Tribol.
,
234
(
12
), pp.
1957
1972
.
50.
Li
,
J.
,
Peng
,
Y.
,
Tang
,
X.
,
Xu
,
Q.
,
Liu
,
B.
, and
Bai
,
L.
,
2021
, “
Lubrication Performance of Hydrogenated Graphene on Diamond-Like Carbon Films Based on Molecular Dynamics Simulation
,”
Tribol. Lett.
,
69
(
1
), p.
12
.
51.
Xu
,
C.
,
Schall
,
D.
, and
Barber
,
G.
,
2023
, “
Molecular Dynamics Simulation on the Friction Properties of Confined Nanofluids
,”
Mater. Today Commun.
,
34
, p.
105252
.
52.
Yang
,
Y.
,
Huang
,
L.
, and
Shi
,
Y.
,
2016
, “
Adhesion Suppresses Atomic Wear in Single-Asperity Sliding
,”
Wear
,
352–353
, pp.
31
41
.
53.
Chen
,
K.
,
Wang
,
L.
,
Chen
,
Y.
, and
Wang
,
Q.
,
2017
, “
Molecular Dynamics Simulation of Microstructure Evolution and Heat Dissipation of Nanoscale Friction
,”
Int. J. Heat Mass Transf.
,
109
, pp.
293
301
.
54.
Dong
,
Y.
,
Duan
,
Z.
,
Tao
,
Y.
,
Wei
,
Z.
,
Gueye
,
B.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2019
, “
Friction Evolution With Transition from Commensurate to Incommensurate Contacts Between Graphene Layers
,”
Tribol. Int.
,
136
, pp.
259
266
.
55.
Pan
,
L.
,
Han
,
Y.
,
Chen
,
Y.
, and
Guo
,
L.
,
2022
, “
Synergistic Lubrication Effects and Tribological Properties of Graphene/Oil-Based Lubricant Systems
,”
Surf. Topogr. -Metrol. Prop.
,
10
(
4
), p.
045025
.
56.
Song
,
J.
,
Lee
,
S.
,
Lee
,
J.
, and
Yeo
,
C.-D.
,
2015
, “
Atomic Degradation and Wear of Thin Carbon Films Under High-Speed Sliding Contact Using Molecular Dynamics Simulation
,”
Tribol. Lett.
,
60
(
1
), p.
1
.
57.
Wei
,
P.
,
He
,
M.
, and
Ao
,
W.
,
2021
, “
Molecular Dynamics Study of the Frictional Behaviors of Diamond-Like Carbon Films
,”
Appl. Phys. A-Mater. Sci. Process.
,
127
(
9
), p.
652
.
58.
Hu
,
C.
,
Lv
,
J.
,
Bai
,
M.
,
Zhang
,
X.
, and
Tang
,
D.
,
2020
, “
Molecular Dynamics Simulation of Effects of Nanoparticles on Frictional Heating and Tribological Properties at Various Temperatures
,”
Friction
,
8
(
3
), pp.
531
541
.
59.
Xu
,
X.
,
Xu
,
Z.
,
Sun
,
J.
,
Tang
,
G.
, and
Su
,
F.
,
2020
, “
In Situ Synthesizing Carbon-Based Film by Tribo-Induced Catalytic Degradation of Poly-α-Olefin Oil for Reducing Friction and Wear
,”
Langmuir
,
36
(
35
), pp.
10555
10564
.
60.
Wang
,
H.
,
Zhang
,
C.
,
Yu
,
X.
, and
Li
,
Y.
,
2023
, “
Evaluating Wear Volume of Oligoether Esters With an Interpretable Machine Learning Approach
,”
Tribol. Lett.
,
71
(
2
), p.
43
.
61.
Deliwala
,
A. A.
,
Dubey
,
K.
, and
Yerramalli
,
C. S.
,
2022
, “
Predicting the Erosion Rate of Uni-Directional Glass Fiber Reinforced Polymer Composites Using Machine-Learning Algorithms
,”
ASME J. Tribol.
,
144
(
9
), p.
097107
.
You do not currently have access to this content.