Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This research paper focuses on the fretting wear characteristics of self-mated laser powder bed fusion (L-PBF)-produced Inconel 718 alloy, with the primary aim of characterizing its distinct wear-rate in relation to fretting cycles. This study investigates both the as-built and heat-treated Inconel 718 Superalloy. Experiments were conducted under aggressive contact conditions, involving a flat-on-flat contact pressure of 100 MPa (1645 N) and a temperature of 650 °C sustained over a million cycles. From the preliminary observation, the microstructure reveals that the heat-treated L-PBF alloy has denser and harder precipitates than its as-built counterpart. This indicates that heat-treated alloy is much harder (470 HV0.3) than the as-built Inconel 718 (275 HV0.3). The heat treatment process resulted in the precipitation of beneficial strengthening phases like γ′ and γ″, along with maintaining stable carbides (NbC). Notably, the heat-treated material displays an approximately two-fold lower wear-rate (0.103 μm/cycle at the end of 1000 k cycles) compared to the as-built material (0.238 μm/cycle), attributed primarily to its high strength characteristics. Additionally, the heat-treated material demonstrates a reduced steady-state friction coefficient (0.34) in contrast to the as-built material (0.37), owing to its inherent capability to form a uniform and stable lubricious glaze oxide layer. Both as-built and heat-treated systems show dominant adhesive wear mechanisms along with localized abrasion resulting from the combination of oxidation and cyclic wear processes.

References

1.
Lewandowski
,
M.
,
Sahai
,
V.
,
Wilcox
,
R.
,
Matlock
,
C.
, and
Overfelt
,
R.
,
1994
, “
High Temperature Deformation of INCONEL 718 Castings
,”
Superalloys
,
718
, pp.
625
706
.
2.
Pollock
,
T. M.
, and
Tin
,
S.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
,”
J. Propul. Power
,
22
(
2
), pp.
361
374
.
3.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
4.
Hyer
,
H.
,
Zhou
,
L.
,
Liu
,
Q.
,
Wu
,
D.
,
Song
,
S.
,
Bai
,
Y.
,
McWilliams
,
B.
,
Cho
,
K.
, and
Sohn
,
Y.
,
2021
, “
High Strength WE43 Microlattice Structures Additively Manufactured by Laser Powder Bed Fusion
,”
Materialia
,
16
, p.
101067
.
5.
Georgilas
,
K.
,
Khan
,
R. H.
, and
Kartal
,
M. E.
,
2020
, “
The Influence of Pulsed Laser Powder Bed Fusion Process Parameters on Inconel 718 Material Properties
,”
Mater. Sci. Eng. A
,
769
, p.
138527
.
6.
Jiang
,
R.
,
Mostafaei
,
A.
,
Wu
,
Z.
,
Choi
,
A.
,
Guan
,
P. W.
,
Chmielus
,
M.
, and
Rollett
,
A. D.
,
2020
, “
Effect of Heat Treatment on Microstructural Evolution and Hardness Homogeneity in Laser Powder Bed Fusion of Alloy 718
,”
Addit. Manuf.
,
35
, p.
101282
.
7.
Levkulich
,
N. C.
,
Semiatin
,
S. L.
,
Gockel
,
J. E.
,
Middendorf
,
J. R.
,
DeWald
,
A. T.
, and
Klingbeil
,
N. W.
,
2019
, “
The Effect of Process Parameters on Residual Stress Evolution and Distortion in the Laser Powder Bed Fusion of Ti-6Al-4 V
,”
Addit. Manuf.
,
28
, pp.
475
484
.
8.
Sochalski-Kolbus
,
L. M.
,
Payzant
,
E. A.
,
Cornwell
,
P. A.
,
Watkins
,
T. R.
,
Babu
,
S. S.
,
Dehoff
,
R. R.
,
Lorenz
,
M.
,
Ovchinnikova
,
O.
, and
Duty
,
C.
,
2015
, “
Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering
,”
Metall. Mater. Trans. A
,
46
(
3
), pp.
1419
1432
.
9.
Rangaswamy
,
P.
,
Griffith
,
M. L.
,
Prime
,
M. B.
,
Holden
,
T. M.
,
Rogge
,
R. B.
,
Edwards
,
J. M.
, and
Sebring
,
R. J.
,
2005
, “
Residual Stresses in LENS Components Using Neutron Diffraction and Contour Method
,”
Mater. Sci. Eng. A
,
399
(
1–2
), pp.
72
83
.
10.
Yadollahi
,
A.
, and
Shamsaei
,
N.
,
2017
, “
Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities
,”
Int. J. Fatigue
,
98
, pp.
14
31
.
11.
ASTM International
,
2018
, “
Standard for Additive Manufacturing—Post Processing Methods—Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion
,”
ASTM
, F3301-18a, https://www.astm.org/f3301-18a.html.
12.
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Murr
,
L. E.
,
Martínez
,
E.
,
Shindo
,
P. W.
,
Hernandez
,
J.
, and
Collins
,
S.
,
2012
, “
Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting
,”
Acta Mater.
,
60
(
5
), pp.
2229
2239
.
13.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
(
5
), pp.
513
528
.
14.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11-12
), pp.
1114
1127
.
15.
Sathisha
,
C. H.
,
Arivu
,
Y.
,
Pramod
,
S.
,
Sridhar
,
M. R.
, and
Kesavan
,
D.
,
2024
, “
Exploring Elevated Temperature Fretting Wear Behaviour of Wrought and Laser Powder Bed Fusion IN718 Superalloy
,”
Tribol. Int.
,
192
, p.
109279
.
16.
Stachowiak
,
A.
,
Wieczorek
,
D.
,
Gruber
,
K.
,
Bartkowski
,
D.
,
Bartkowska
,
A.
, and
Ulbrich
,
D.
,
2023
, “
Comparison of Tribocorrosion Resistance of Inconel® 718 Alloy Manufactured by Conventional Method and Laser Powder Bed Fusion Method
,”
Tribol. Int.
,
182
, p.
108368
.
17.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
.
18.
Kurzynowski
,
T.
,
Smolina
,
I.
,
Kobiela
,
K.
,
Kuźnicka
,
B.
, and
Chlebus
,
E.
,
2017
, “
Wear and Corrosion Behaviour of Inconel 718 Laser Surface Alloyed With Rhenium
,”
Mater. Des.
,
132
, pp.
349
359
.
19.
Rong
,
T.
,
Gu
,
D.
,
Shi
,
Q.
,
Cao
,
S.
, and
Xia
,
M.
,
2016
, “
Effects of Tailored Gradient Interface on Wear Properties of WC/Inconel 718 Composites Using Selective Laser Melting
,”
Surf. Coat. Technol.
,
307
(
Part A
), pp.
418
427
.
20.
Gu
,
D.
,
Zhang
,
H.
,
Dai
,
D.
,
Xia
,
M.
,
Hong
,
C.
, and
Poprawe
,
R.
,
2019
, “
Laser Additive Manufacturing of Nano-TiC Reinforced Ni-Based Nanocomposites With Tailored Microstructure and Performance
,”
Compos. B Eng.
,
163
, pp.
585
597
.
21.
Zhang
,
Y.
,
Yang
,
L.
,
Chen
,
T.
,
Zhang
,
W.
,
Huang
,
X.
, and
Dai
,
J.
,
2017
, “
Investigation on the Optimized Heat Treatment Procedure for Laser Fabricated IN718 Alloy
,”
Opt. Laser Technol.
,
97
, pp.
172
179
.
22.
Goodfellow
,
A. J.
,
Owen
,
L. R.
,
Christofidou
,
K. A.
,
Kelleher
,
J.
,
Hardy
,
M. C.
, and
Stone
,
H. J.
,
2019
, “
The Effect of Temperature and Mo Content on the Lattice Misfit of Model Ni-Based Superalloys
,”
Metals
,
9
(
6
), p.
700
.
23.
Deng
,
D.
,
Peng
,
R. L.
,
Brodin
,
H.
, and
Moverare
,
J.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
713
, pp.
294
306
.
24.
Popovich
,
A. A.
,
Sufiiarov
,
V. S.
,
Polozov
,
I. A.
, and
Borisov
,
E. V.
,
2015
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment
,”
Key Eng. Mater.
,
651-653
, pp.
665
670
.
25.
Schröder
,
J.
,
Mishurova
,
T.
,
Fritsch
,
T.
,
Serrano-Munoz
,
I.
,
Evans
,
A.
,
Sprengel
,
M.
,
Klaus
,
M.
,
Genzel
,
C.
,
Schneider
,
J.
, and
Bruno
,
G.
,
2021
, “
On the Influence of Heat Treatment on Microstructure and Mechanical Behavior of Laser Powder Bed Fused Inconel 718
,”
Mater. Sci. Eng. A
,
805
, p.
140555
.
26.
Huang
,
W.
,
Yang
,
J.
,
Yang
,
H.
,
Jing
,
G.
,
Wang
,
Z.
, and
Zeng
,
X.
,
2019
, “
Heat Treatment of Inconel 718 Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
750
, pp.
98
107
.
27.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
, p.
100877
.
28.
Ghiban
,
B.
,
Elefterie
,
C. F.
,
Guragata
,
C.
, and
Bran
,
D.
,
2018
, “
Requirements of Inconel 718 Alloy for Aeronautical Applications
,”
AIP Conf. Proc.
,
1932
(
1
), p.
030016
.
29.
Anderson
,
M.
,
Thielin
,
A. L.
,
Bridier
,
F.
,
Bocher
,
P.
, and
Savoie
,
J.
,
2017
, “
δ Phase Precipitation in Inconel 718 and Associated Mechanical Properties
,”
Mater. Sci. Eng. A
,
679
, pp.
48
55
.
30.
Hakeem
,
A. S.
,
Patel
,
F.
,
Minhas
,
N.
,
Malkawi
,
A.
,
Aleid
,
Z.
,
Ehsan
,
M. A.
,
Sharrofna
,
H.
, and
Al Ghanim
,
A.
,
2021
, “
Comparative Evaluation of Thermal and Mechanical Properties of Nickel Alloy 718 Prepared Using Selective Laser Melting, Spark Plasma Sintering, and Casting Methods
,”
J. Mater. Res. Technol.
,
12
, pp.
870
881
.
31.
Li
,
X.
,
Shi
,
J. J.
,
Wang
,
C. H.
,
Cao
,
G. H.
,
Russell
,
A. M.
,
Zhou
,
Z. J.
,
Li
,
C. P.
, and
Chen
,
G. F.
,
2018
, “
Effect of Heat Treatment on Microstructure Evolution of Inconel 718 Alloy Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
764
, pp.
639
649
.
32.
Chlebus
,
E.
,
Gruber
,
K.
,
Kuźnicka
,
B.
,
Kurzac
,
J.
, and
Kurzynowski
,
T.
,
2015
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
639
, pp.
647
655
.
33.
Raghavan
,
S.
,
Zhang
,
B.
,
Wang
,
P.
,
Sun
,
C. N.
,
Nai
,
M. L.
,
Li
,
T.
, and
Wei
,
J.
,
2017
, “
Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy
,”
Mater. Manuf. Processes
,
32
(
14
), pp.
1588
1595
.
34.
Karabulut
,
Y.
,
Tascioglu
,
E.
, and
Kaynak
,
Y.
,
2021
, “
Heat Treatment Temperature-Induced Microstructure, Microhardness and Wear Resistance of Inconel 718 Produced by Selective Laser Melting Additive Manufacturing
,”
Optik
,
227
, p.
163907
.
35.
Fouvry
,
S.
,
2023
, “Friction Energy Wear Approach,”
Fretting Wear and Fretting Fatigue
,
T.
Liskiewicz
and
D.
Dini
, eds.,
Elsevier eBooks
,
Radarweg, Amsterdam, Netherlands
, pp.
87
117
.
36.
Zambrano
,
O. A.
,
Muñoz
,
E. C.
,
Rodríguez
,
S. A.
, and
Coronado
,
J. J.
,
2020
, “
Running-In Period for the Abrasive Wear of Austenitic Steels
,”
Wear
,
452-453
, p.
203298
.
37.
Peter
,
J. B.
,
2008
,
Friction Science and Technology
,
CRC Press eBooks
,
Boca Raton, FL
, pp.
126
155
.
38.
Rahman
,
M. S.
,
Ding
,
J.
,
Beheshti
,
A.
,
Zhang
,
X.
, and
Polycarpou
,
A. A.
,
2018
, “
Elevated Temperature Tribology of Ni Alloys Under Helium Environment for Nuclear Reactor Applications
,”
Tribol. Int.
,
123
, pp.
372
384
.
39.
Rosenberger
,
M. R.
,
Schvezov
,
C. E.
, and
Forlerer
,
E.
,
2005
, “
Wear of Different Aluminum Matrix Composites Under Conditions That Generate a Mechanically Mixed Layer
,”
Wear
,
259
(
1-6
), pp.
590
601
.
40.
Li
,
X. Y.
, and
Tandon
,
K. N.
,
2000
, “
Microstructural Characterization of Mechanically Mixed Layer and Wear Debris in Sliding Wear of an Al Alloy and an Al Based Composite
,”
Wear
,
245
(
1-2
), pp.
148
161
.
41.
Behera
,
A.
, and
Sahoo
,
A. K.
,
2020
, “
Wear Behaviour of Ni Based Superalloy: A Review
,”
Mater. Today: Proc.
,
33
(
8
), pp.
5638
5642
.
42.
Korashy
,
A.
,
Attia
,
H.
,
Thomson
,
V.
, and
Oskooei
,
S.
,
2020
, “
Fretting Wear Behavior of Cobalt—Based Superalloys at High Temperature—A Comparative Study
,”
Tribol. Int.
,
145
, p.
106155
.
43.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
44.
Xie
,
T.
,
Zhou
,
L.
,
Ding
,
H.
,
Zhu
,
Y.
,
Yang
,
W.
,
Xiao
,
Q.
,
Wang
,
W.
,
Guo
,
J.
, and
Liu
,
Q.
,
2021
, “
Investigation on the Rolling Contact Fatigue Behaviors of Different Laser Cladding Materials on the Damaged Rail
,”
ASME. J. Tribol.
,
143
(
5
), p.
050802
.
45.
Jalalahmadi
,
B.
,
Liu
,
J.
,
Liu
,
Z.
,
Vechart
,
A.
, and
Weinzapfel
,
N.
,
2021
, “
An Integrated Computational Materials Engineering Predictive Platform for Fatigue Prediction and Qualification of Metallic Parts Built With Additive Manufacturing
,”
ASME. J. Tribol.
,
143
(
5
), p.
051112
.
46.
Sanjeev
,
K. C.
,
Nezhadfar
,
P. D.
,
Phillips
,
C.
,
Kennedy
,
M. S.
,
Shamsaei
,
N.
, and
Jackson
,
R. L.
,
2019
, “
Tribological Behavior of 17–4 PH Stainless Steel Fabricated by Traditional Manufacturing and Laser-Based Additive Manufacturing Methods
,”
Wear
,
440–441
, p.
203100
.
47.
Dangnan
,
F.
,
Espejo
,
C.
,
Liskiewicz
,
T.
,
Gester
,
M.
, and
Neville
,
A.
,
2020
, “
Friction and Wear of Additive Manufactured Polymers in Dry Contact
,”
J. Manuf. Processes
,
59
, pp.
238
247
.
48.
Sunay
,
N.
,
Kaya
,
M.
,
Yılmaz
,
M. S.
, and
Kaynak
,
Y.
,
2023
, “
Effects of Heat Treatment on Surface Integrity and Wear Performance of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion Process Additive Manufacturing Under Different Laser Power and Scanning Speed Parameters
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
8
), p.
430
.
49.
Thomas
,
V.
,
Colin
,
C.
,
Bartout
,
J.
,
Nazé
,
L.
, and
Sennour
,
M.
,
2012
, “
Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy
,”
Mater. Sci. Eng. A
,
534
, pp.
446
451
.
50.
Iwabuchi
,
A.
,
1991
, “
The Role of Oxide Particles in the Fretting Wear of Mild Steel
,”
Wear
,
151
(
2
), pp.
301
311
.
You do not currently have access to this content.