Graphical Abstract Figure
Issue Section:
Contact Mechanics
Abstract
Flow-induced vibration inevitably leads to fretting damage behavior on the surface of steam generator tubes. Impact-sliding fretting wear indicates that the alloy tube surface experiences a dynamic impact and a sliding shear behavior simultaneously. Finite element analysis was conducted to investigate the dynamic mechanical response of the Inconel 690 alloy tube, which is influenced by different impact-sliding fretting parameters under frictionless conditions. Results showed that the effects of sliding frequency and amplitude on the contact stress, elastic−plastic strain, and energy dissipation of the fretting interface were not directly proportional. Increasing the impact amplitude would enhance this dynamic behavior effect.
Issue Section:
Contact Mechanics
References
1.
Zhang
, S. Z.
, Tian
, C.
, Liu
, L. Y.
, and Tan
, W.
, 2023
, “Effect of Temperature on Simulated Flow-Induced Vibration Wear Behavior of Inconel 690 Alloy Mated With 304 SS in Pressurized Steam/Water Environment
,” ASME J. Tribol.
, 145
(3
), p. 031707
. 2.
Cai
, Z. B.
, Li
, Z. Y.
, Yin
, M. G.
, Zhu
, M. H.
, and Zhou
, Z. R.
, 2020
, “A Review of Fretting Study on Nuclear Power Equipment
,” Tribol. Int.
, 144
, p. 106095
. 3.
Wang
, Y.
, Gang
, L.
, Liu
, S.
, and Cui
, Y.
, 2021
, “Coupling Fractal Model for Fretting Wear on Rough Contact Surfaces
,” ASME J. Tribol.
, 143
(9
), p. 091701
. 4.
Ahmadi
, A.
, and Sadeghi
, F.
, 2022
, “A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime
,” ASME J. Tribol.
, 144
(5
), p. 051602
. 5.
Yue
, T. Y.
, and Wahab
, M. A.
, 2017
, “Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,” Tribol. Int.
, 107
, pp. 274
–282
. 6.
Cai
, M. X.
, Zhang
, P.
, Xiong
, Q. W.
, Cai
, Z. B.
, Luo
, S. Y.
, Gu
, L.
, and Zeng
, L. C.
, 2023
, “Finite Element Simulation of Fretting Wear Behaviors Under the Ball-on-Flat Contact Configuration
,” Tribol. Int.
, 177
, p. 107930
. 7.
Bian
, W. W.
, Hong
, C.
, Xin
, L.
, Kang
, L. Z.
, Han
, Y. M.
, Liu
, H.
, Shoji
, T.
, and Lu
, Y. H.
, 2022
, “Effect of the Cycle Number on Fretting Wear Behavior of Alloy 690TT Tube in High-Temperature Pressurized Water
,” J. Nucl. Mater.
, 567
, p. 153828
. 8.
Kong
, Y.
, Bennett
, C. J.
, and Hyde
, C. J.
, 2022
, “A Computationally Efficient Method for the Prediction of Fretting Wear in Practical Engineering Applications
,” Tribol. Int.
, 165
, p. 107317
. 9.
Ahmadi
, A.
, and Sadeghi
, F.
, 2021
, “A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip
,” ASME J. Tribol.
, 143
(4
), p. 041502
. 10.
Done
, V.
, Kesavan
, D.
, Murali
, K. R.
, Chaise
, T.
, and Nelias
, D.
, 2017
, “Semi Analytical Fretting Wear Simulation Including Wear Debri
,” Tribol. Int.
, 109
, pp. 1
–9
. 11.
Xiong
, G. M.
, Wang
, Y. P.
, Long
, T.
, Guo
, K.
, and Tan
, W.
, 2021
, “CFD Simulation and Flow-Induced Vibration Evaluation of PWR Steam Generator U Tubes
,” Prog. Nucl. Energy
, 141
, p. 103937
. 12.
Cai
, Z. B.
, Chen
, Z. Q.
, Sun
, Y.
, Jin
, J. Y.
, Peng
, J. F.
, and Zhu
, M. H.
, 2019
, “Development of a Novel Cycling Impact–Sliding Wear Rig to Investigate the Complex Friction Motion
,” Friction
, 7
(1
), pp. 32
–43
. 13.
Tan
, D. Q.
, Mo
, J. L.
, He
, W. F.
, Luo
, J.
, Zhang
, Q.
, Zhu
, M. H.
, and Zhou
, Z. R.
, 2019
, “Suitability of Laser Shock Peening to Impact-Sliding Wear in Different System Stiffnesses
,” Surf. Coat. Technol.
, 358
, pp. 22
–35
. 14.
Tan
, D. Q.
, Yang
, X. Q.
, He
, Q.
, Mo
, J. L.
, Zhuang
, W. H.
, and He
, J. F.
, 2021
, “Impact-Sliding Wear Properties of PVD CrN and WC/C Coatings
,” Surf. Eng.
, 37
(1
), pp. 12
–23
. 15.
Yin
, M. G.
, Thibaut
, C.
, Wang
, L. W.
, Nélias
, D.
, Zhu
, M. H.
, and Cai
, Z. B.
, 2022
, “Impact-Sliding Wear Response of 2.25 Cr1Mo Steel Tubes: Experimental and Semi-Analytical Method
,” Friction
, 10
(3
), pp. 473
–490
. 16.
Yin
, M. G.
, Cai
, Z. B.
, Yu
, Y. Q.
, and Zhu
, M. H.
, 2020
, “Impact-Sliding Wear Behaviors of 304SS Influenced by Different Impact Kinetic Energy and Sliding Velocity
,” Tribol. Int.
, 143
, p. 106057
. 17.
Guo
, K.
, Tian
, C.
, Wang
, Y. P.
, Wang
, Y.
, and Tan
, W.
, 2020
, “An Energy-Based Model for Impact-Sliding Fretting Wear Between Tubes and Anti-Vibration Bars in Steam Generators
,” Tribol. Int.
, 148
, p. 106305
. 18.
Wang
, J. F.
, Xue
, W. H.
, Gao
, S. Y.
, Wu
, B.
, Li
, S.
, and Duan
, D. L.
, 2020
, “System Deformation Behavior of Friction Pair in Fretting Wear
,” ASME J. Tribol.
, 142
(12
), p. 121702
. 19.
Gessesse
, Y. B.
, and Attia
, M. H.
, 2004
, “On the Mechanics of Crack Initiation and Propagation in Elasto-Plastic Materials in Impact Fretting Wear
,” ASME J. Tribol.
, 126
(2
), pp. 395
–403
. 20.
Koshy
, C. S.
, Flores
, P.
, and Lankarani
, H. M.
, 2013
, “Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,” Nonlinear Dyn.
, 73
(1–2
), pp. 325
–338
. 21.
Yun
, J. Y.
, Park
, M. C.
, Shin
, G. S.
, Heo
, J. H.
, Kim
, D. I.
, and Kim
, S. J.
, 2014
, “Effects of Amplitude and Frequency on the Wear Mode Change of Inconel 690 SG Tube Mated with SUS 409
,” Wear
, 313
(1–2
), pp. 83
–88
. 22.
Fouvry
, S.
, Arnaud
, P.
, Mignot
, A.
, and Neubauer
, P.
, 2017
, “Contact Size, Frequency and Cyclic Normal Force Effects on Ti–6Al–4V Fretting Wear Processes: An Approach Combining Friction Power and Contact Oxygenation
,” Tribol. Int.
, 113
, pp. 460
–473
. 23.
Ma
, X.
, Tan
, W.
, Bonzom
, R.
, Mi
, X.
, and Zhu
, G. R.
, 2023
, “Impact–Sliding Fretting Tribocorrosion Behavior of 316L Stainless Steel in Solution With Different Halide Concentrations
,” Friction
, 22
(12
), pp. 1
–19
.24.
Doan
, D. Q.
, and Fang
, T. H.
, 2022
, “Effect of Vibration Parameters on the Material Removal Characteristics of High-Entropy Alloy in Scratching
,” Int. J. Mech. Sci.
, 232
, p. 107597
. 25.
Wu
, J. Z.
, Welcome
, D. E.
, Krajnak
, K.
, and Dong
, R. G.
, 2007
, “Finite Element Analysis of the Penetrations of Shear and Normal Vibrations Into the Soft Tissues in a Fingertip
,” Med. Eng. Phys.
, 29
(6
), pp. 718
–727
. 26.
Xiao
, L.
, Xu
, Y. Q.
, and Chen
, Z. Y.
, 2022
, “A Numerical Simulation of Fretting Wear Considering the Dynamic Evolution of Debris for the Coated Contact Surface
,” ASME J. Tribol.
, 144
(4
), p. 041701
. 27.
Zhang
, P.
, Lu
, W. L.
, Liu
, X. J.
, Zhai
, W. Z.
, Zhou
, M. Z.
, and Zeng
, W. H.
, 2018
, “Torsional Fretting and Torsional Sliding Wear Behaviors of CuNiAl Against 42CrMo4 Under dry Condition
,” Tribol. Int.
, 118
, pp. 11
–19
. 28.
Kirk
, A. M.
, Sun
, W.
, Bennett
, C. J.
, and Shipway
, P. H.
, 2021
, “Interaction of Displacement Amplitude and Frequency Effects in Fretting Wear of a High Strength Steel: Impact on Debris bed Formation and Subsurface Damage
,” Wear
, 482
, p. 203981
. 29.
Zhang
, F.
, Yin
, M. G.
, and Li
, Q.
, 2022
, “Fretting Wear Behavior of MicroArc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,” ASME J. Tribol.
, 144
(4
), p. 041703
. Copyright © 2024 by ASME
You do not currently have access to this content.