Abstract

When sand enters the gap between the shaft and water-lubricated bearing, it will nick surfaces of shaft and bearing bush, and the scratch will appear. The variations of static and transient performance with the number and depth of scratches are studied in the paper. The results show that scratches have a significant effect on the critical load and critical speed of the transformation of bearing lubrication state. The existence of scratches reduces the critical load from elastohydrodynamic lubrication to mixed lubrication. The shaft with scratches vibrates more strongly than the shaft with no scratch at the moment of start-up. The contact area, contact time, and bush-burning probability are directly proportional to the number of scratches. Shaft center movement orbits under step load have the similar “L” shape, whether the shaft has scratch or not. But the scratched shaft has longer movement orbit and lower equilibrium point than the shaft with no scratch. This paper can provide a reference for structure design and service life evaluation of bearing-shaft system.

References

1.
Xie
,
Z. L.
,
Wang
,
X. R.
, and
Zhu
,
W. D.
,
2022
, “
Theoretical and Experimental Exploration Into the Fluid Structure Coupling Dynamic Behaviors Towards Water-Lubricated Bearing With Axial Asymmetric Grooves
,”
Mech. Syst. Sig. Process.
,
168
(
4
), p.
108624
.
2.
Avishai
,
D.
, and
Morel
,
G.
,
2021
, “
Experimental Investigation of Lubrication Regimes of a Water-Lubricated Bearing in the Propulsion Train of a Marine Vessel
,”
ASME J. Tribol.
,
143
(
4
), p.
041803
.
3.
Liu
,
G.
, and
Li
,
M.
,
2022
, “
Lubrication Characteristics of Water-Lubricated Rubber Bearings Based on an Improved Algorithm of the Mass Conservation Boundary Condition
,”
ASME J. Tribol.
,
144
(
8
), p.
081804
.
4.
Xiang
,
G.
,
Han
,
Y.
,
He
,
T.
,
Wang
,
J.
, and
Xiao
,
K.
,
2020
, “
A Dynamic Wear Model for Micro-Grooved Water-Lubricated Bearings Under Transient Mixed Lubrication Condition
,”
ASME J. Tribol.
,
142
(
7
), p.
071701
.
5.
Wang
,
C.
,
Bai
,
X.
,
Guo
,
Z.
,
Dong
,
C.
, and
Yuan
,
C.
,
2021
, “
A Strategy That Combines a Hydrogel and Graphene Oxide to Improve the Water-Lubricated Performance of Ultrahigh Molecular Weight Polyethylene
,”
Composites, Part A
,
141
(
2
), p.
106207
.
6.
Nisaka
,
H.
, and
Harano
,
M. K.
,
2004
, “
Development on Ceramics Application to Water Turbine Bearings
,”
Turbomachinery
,
32
(
1
), pp.
681
686
.
7.
Litwin
,
W.
,
2015
, “
Experimental Research on Water Lubricated Three Layer Sliding Bearing With Lubrication Grooves in the Upper Part of the Bush and Its Comparison With a Rubber Bearing
,”
Tribol. Int.
,
82
(
2
), pp.
153
161
.
8.
Abdelbary
,
A.
,
Abouelwafa
,
M. N.
,
El Fahham
,
I. M.
, and
Hamdy
,
A. H.
,
2013
, “
The Effect of Surface Defects on the Wear of Nylon 66 Under Dry and Water Lubricated Sliding
,”
Tribol. Int.
,
59
(
3
), pp.
163
169
.
9.
Piątkowska
,
E.
,
2022
, “
Influence of Solid Particle Contamination on the Wear Process in Water Lubricated Marine Strut Bearings With NBR and PTFE Bushes
,”
Pol. Marit. Res.
,
28
(
4
), pp.
167
178
.
10.
Yan
,
X.
,
Fan
,
C.
,
Wang
,
W.
,
Liu
,
X.
, and
Chen
,
B.
,
2022
, “
Experimental and Simulation Study of the Dynamic Characteristics of Friction Force Under Third-Body Intrusion Behaviour
,”
Mech. Syst. Sig. Process.
,
168
(
4
), p.
108726
.
11.
Lin
,
Y.
,
He
,
S.
,
Lai
,
D.
,
Wei
,
J.
,
Ji
,
Q.
,
Huang
,
J.
, and
Pan
,
M.
,
2020
, “
Wear Mechanism and Tool Life Prediction of High-Strength Vermicular Graphite Cast Iron Tools for High-Efficiency Cutting
,”
Wear
,
454
(
8
), p.
203319
.
12.
Bouyer
,
J.
,
Fillon
,
M.
,
Helene
,
M.
,
Beaurain
,
J.
, and
Giraudeau
,
C.
,
2019
, “
Behavior of a Two-Lobe Journal Bearing With a Scratched Shaft: Comparison Between Theory and Experiment
,”
ASME J. Tribol.
,
141
(
2
), p.
021702
.
13.
Bouyer
,
J.
,
Alexandre
,
Y.
, and
Fillon
,
M.
,
2021
, “
Experimental Investigation on the Influence of a Multi-scratched Shaft on Hydrodynamic Journal Bearing Performance
,”
Tribol. Int.
,
153
(
1
), p.
106543
.
14.
Das
,
P. K.
, and
Dancer
,
S. B.
,
1983
, “
The Effects of Common Variations in Diesel Engine Bearings
,” SAE Technical Paper., No. 3, p.
831286
.
15.
Branagan
,
L. A.
,
2006
, “
Influence of Deep, Continuous Circumferential Scratches on Radial Fluid Film Bearings
,”
Proceedings of 61st STLE Annual Meeting & Exhibition
,
Alberta, Canada
,
May 7–11
.
16.
Dobrica
,
M. B.
, and
Fillon
,
M.
,
2012
, “
Performance Degradation in Scratched Journal Bearings
,”
Tribol. Int.
,
51
(
7
), pp.
1
10
.
17.
Giraudeau
,
C.
,
Bouyer
,
J.
,
Fillon
,
M.
,
Hélène
,
M.
, and
Beaurain
,
J.
,
2017
, “
Experimental Study of the Influence of Scratches on the Performance of a Two-Lobe Journal Bearing
,”
Tribol. Trans.
,
60
(
5
), pp.
942
955
.
18.
Zhang
,
X.
,
Yin
,
Z.
,
Jiang
,
D.
, and
Gao
,
G.
,
2014
, “
The Design of Hydrodynamic Water-Lubricated Step Thrust Bearings Using CFD Method
,”
Mech. Ind.
,
15
(
3
), pp.
197
206
.
19.
Du
,
Y.
,
Lan
,
J.
,
Quan
,
H.
,
Sun
,
C.
,
Liu
,
X.
, and
Yang
,
X.
,
2021
, “
Effect of Different Turbulent Lubrication Models on the Lubrication Characteristics of Water-Lubricated Rubber Bearings at a High Reynolds Number
,”
Phys. Fluids
,
33
(
6
), p.
065118
.
20.
Xie
,
Z.
,
Shen
,
N.
,
Zhu
,
W.
,
Tian
,
W.
, and
Hao
,
L.
,
2021
, “
Theoretical and Experimental Investigation on the Influences of Misalignment on the Lubrication Performances and Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Sig Process.
,
149
(
2
), p.
107211
.
21.
Xie
,
Z.
,
Zhang
,
Y.
,
Zhou
,
J.
, and
Zhu
,
W.
,
2021
, “
Theoretical and Experimental Research on the Micro Interface Lubrication Regime of Water Lubricated Bearing
,”
Mech. Syst. Sig. Process.
,
151
(
4
), p.
107422
.
22.
Gao
,
G. Y.
,
Yin
,
Z. W.
,
Jiang
,
D.
, and
Zhang
,
X. L.
,
2014
, “
Numerical Analysis of Plain Journal Bearing Under Hydrodynamic Lubrication by Water
,”
Tribol. Int.
,
75
(
7
), pp.
31
38
.
23.
Gengyuan
,
Y.
,
Zhongwei
,
Y.
,
Dan
,
J.
, and
Xiuli
,
Z.
,
2015
, “
CFD Analysis of Load-Carrying Capacity of Hydrodynamic Lubrication on a Water-Lubricated Journal Bearing
,”
Ind. Lubr. Tribol.
,
67
(
1
), pp.
30
37
.
24.
Liu
,
C. J.
,
Gao
,
G. Y.
,
Gu
,
X. M.
, and
Zhang
,
F.
,
2021
, “
Study on Lubrication Performance of Composites Water-Lubricated Stern Bearing
,”
J. Phys. Conf. Ser.
,
2002
(
1
), p.
012024
.
25.
Litwin
,
W.
, and
Olszewski
,
A.
,
2014
, “
Water-Lubricated Sintered Bronze Journal Bearings—Theoretical and Experimental Research
,”
Tribol. Trans.
,
57
(
1
), pp.
114
122
.
26.
Litwin
,
W.
,
2016
, “
Influence of Local Bush Wear on Water Lubricated Sliding Bearing Load Carrying Capacity
,”
Tribol. Int.
,
103
(
11
), pp.
352
358
.
27.
Elsharkawy
,
A. A.
, and
Guedouar
,
L. H.
,
2001
, “
An Inverse Solution for Finite Journal Bearings Lubricated With Couple Stress Fluids
,”
Tribol. Int.
,
34
(
2
), pp.
107
118
.
28.
Zhang
,
X. L.
,
Yin
,
Z. W.
,
Gao
,
G. Y.
, and
Li
,
Z.
,
2015
, “
Determination of Stiffness Coefficients of Hydrodynamic Water-Lubricated Plain Journal Bearings
,”
Tribol. Int.
,
85
(
5
), pp.
37
47
.
29.
Jiang
,
S. Y.
,
Liu
,
P. F.
, and
Lin
,
X. H.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
30.
Zhang
,
S. W.
, and
Jiang
,
S. Y.
,
2021
, “
Comparative Study on Static Characteristics of Double-Pad Inwardly and Outwardly Pumping Water-Lubricated Spiral-Groove Thrust Bearings
,”
ASME J. Tribol.
,
143
(
10
), p.
104501
.
31.
Zhang
,
S. W.
,
Jiang
,
S. Y.
, and
Lin
,
X. H.
,
2020
, “
Comparative Study on Dynamic Characteristics of Double-Pad Inwardly and Outwardly Pumping Water-Lubricated Spiral-Groove Thrust Bearings
,”
ASME J. Tribol.
,
142
(
9
), p.
091803
.
32.
Hu
,
D.
,
Guo
,
Z. W.
,
Xie
,
X.
, and
Yuan
,
C. Q.
,
2019
, “
Effect of Spherical-Convex Surface Texture on Tribological Performance of Water-Lubricated Bearing
,”
Tribol. Int.
,
134
(
6
), pp.
341
351
.
33.
Gong
,
J. Y.
,
Jin
,
Y.
,
Liu
,
Z. L.
,
Jiang
,
H.
, and
Xiao
,
M. H.
,
2019
, “
Study on Influencing Factors of Lubrication Performance of Water-Lubricated Micro-Groove Bearing
,”
Tribol. Int.
,
129
(
1
), pp.
390
397
.
34.
Xiang
,
G.
,
Wang
,
J.
,
Han
,
Y. F.
,
Yang
,
T. Y.
,
Dai
,
H. M.
,
Yao
,
B. W.
,
Zhou
,
C.
, and
Wang
,
L.
,
2022
, “
Investigation on the Nonlinear Dynamic Behaviors of Water-Lubricated Bearings Considering Mixed Thermoelastohydrodynamic Performances
,”
Mech. Syst. Sig. Process.
,
169
(
4
), p.
108627
.
35.
Cai
,
J. L.
,
Xiang
,
G.
,
Li
,
S.
,
Guo
,
J.
,
Wang
,
J.
,
Chen
,
S.
, and
Yang
,
T.
,
2022
, “
Mathematical Modeling for Nonlinear Dynamic Mixed Friction Behaviors of Novel Coupled Bearing Lubricated With Low Viscosity Fluid
,”
Phys. Fluids
,
34
(
9
), p.
093612
.
36.
Xiang
,
G.
,
Yang
,
T. Y.
,
Guo
,
J.
,
Wang
,
J. X.
,
Liu
,
B.
, and
Chen
,
S.
,
2022
, “
Optimization Transient Wear and Contact Performances of Water-Lubricated Bearings Under Fluid-Solid-Thermal Coupling Condition Using Profile Modification
,”
Wear
,
502
(
8
), p.
204379
.
37.
Dong
,
C. L.
,
Yuan
,
C. Q.
,
Bai
,
X. Q.
,
Yang
,
Y.
, and
Yan
,
X. P.
,
2015
, “
Study on Wear Behaviours for NBR/Stainless Steel Under Sand Water-Lubricated Conditions
,”
Wear
,
332
(
5
), pp.
1012
1020
.
38.
Liang
,
P.
,
Lu
,
C.
,
Ding
,
J.
, and
Chen
,
S.
,
2014
, “
A Method for Measuring the Hydrodynamic Effect on the Bearing Land
,”
Tribol. Int.
,
67
(
11
), pp.
146
153
.
39.
Liang
,
P.
,
Lu
,
C.
,
Pan
,
W.
, and
Li
,
S.
,
2014
, “
A New Method for Calculating the Static Performance of Hydrostatic Journal Bearing
,”
Tribol. Int.
,
77
(
9
), pp.
72
77
.
40.
Wu
,
C. W.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
J. Lubr. Technol.
,
111
(
1
), pp.
188
191
.
41.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
42.
Xiang
,
G.
,
Yang
,
T. Y.
,
Ning
,
Q.
,
Zhou
,
C. D.
,
Wang
,
C.
, and
Lv
,
Z. L.
,
2019
, “
Numerical Study on Transient Mixed Lubrication Response for Multiple Grooves Water-Lubricated Bearings Under Non-Linear Shock With 3D Thermal Effect
,”
Surf. Topogr.: Metrol. Prop.
,
9
(
3
), p.
035014
.
43.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
185
(
6
), pp.
625
634
.
44.
Lv
,
F. R.
,
Jiao
,
C. X.
,
Ta
,
N.
, and
Rao
,
Z. S.
,
2018
, “
Mixed-Lubrication Analysis of Misaligned Bearing Considering Turbulence
,”
Tribol. Int.
,
119
(
3
), pp.
19
26
.
45.
Meng
,
F. M.
, and
Chen
,
Y. P.
,
2015
, “
Analysis of Elasto-Hydrodynamic Lubrication of Journal Bearing Based on Different Numerical Methods
,”
Ind. Lubr. Tribol.
,
67
(
5
), pp.
486
497
.
46.
Chan
,
C. W.
,
Han
,
Y. F.
,
Wang
,
Z. J.
,
Wang
,
J. X.
,
Shi
,
F. H.
, and
Wang
,
N. Z.
,
2014
, “
Exploration on a Fast EHL Computing Technology for Analyzing Journal Bearings With Engineered Surface Textures
,”
Tribol. Trans.
,
57
(
2
), pp.
206
215
.
47.
Liang
,
P.
,
Lu
,
C.
,
Yang
,
F.
, and
Wang
,
L.
,
2016
, “
Open-Loop Control of Elliptical Shaft Center Orbit
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
130
(
10
), pp.
1818
1833
.
48.
Elsayed
,
E. K.
, and
EL-Butch
,
A. M. A.
,
2017
, “
A Study on Hydrodynamic Water Lubricated Journal Bearing
,”
Eng. Res. J.
,
153
(
7
), pp.
1
15
.
49.
Zhang
,
H.
,
Yuan
,
C. Q.
, and
Tan
,
Z. S.
,
2021
, “
A Novel Approach to Investigate Temperature Field Evolution of Water Lubricated Stern Bearings (WLSBs) Under Hydrodynamic Lubrication
,”
Adv. Mech. Eng.
,
13
(
2
), p.
1687814021992961
.
50.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth Heinemann
,
Oxford, UK
.
51.
Zhou
,
M.
,
Cui
,
X.
, and
Mao
,
Y.
,
2006
,
Marine Diesel Engine
,
Dalian Maritime University Press
,
Dalian, China
.
52.
Lu
,
X. B.
,
Khonsari
,
M. M.
, and
Gelinck
,
E. R. M.
,
2006
, “
The Stribeck Curve: Experimental Results and Theoretical Prediction
,”
ASME J. Tribol.
,
128
(
4
), pp.
789
794
.
53.
Wang
,
R.
,
Jia
,
Q.
, and
Yuan
,
X.
,
2021
, “
Quantitative Research of Take-Off Speeds and Wear of Graphite Water-Lubricated Hydrodynamic Thrust Bearings
,”
Chin. J. Mech. Eng.
,
32
(
03
), p.
269
.
54.
Xiang
,
G.
,
Wang
,
Y. J.
,
Wang
,
C.
, and
Lv
,
Z. L.
,
2021
, “
Numerical Study on the Dynamic Characteristics of Water-Lubricated Rubber Bearing Under Asperity Contact
,”
Ind. Lubr. Tribol.
,
73
(
4
), pp.
572
580
.
55.
Chen
,
S.
,
Xiang
,
G.
,
Fillon
,
M.
,
Guo
,
J.
,
Wang
,
J.
, and
Cai
,
J.
,
2022
, “
On the Tribo-Dynamic Behaviors During Start-Up of Water Lubricated Bearing Considering Imperfect Journal
,”
Tribol. Int.
,
174
(
10
), p.
107685
.
56.
Cui
,
S. H.
,
Gu
,
L.
,
Fillon
,
M.
,
Wang
,
L. Q.
, and
Zhang
,
C. W.
,
2018
, “
The Effects of Surface Roughness on the Transient Characteristics of Hydrodynamic Cylindrical Bearings During Start-Up
,”
Tribol. Int.
,
128
(
7
), pp.
421
428
.
57.
Hu
,
Y.
, and
Meng
,
Y. G.
,
2020
, “
Theoretical and Experimental Study of Transient Behavior of Spiral-Groove Thrust Bearings During Start-Up
,”
Tribol. Trans.
,
63
(
1
), pp.
154
172
.
You do not currently have access to this content.