Abstract

The heat-treated nanoparticle heat-treated magnesium silicate hydroxide (MSHH) was obtained based on the synthesis of lamellar nanoparticle magnesium silicate hydroxide (MSH) and analysis of thermal stability, and the morphology, phase composition, and chemical groups of nanoparticles were subsequently characterized. The heat treatment process induces partial dehydroxylation of MSHH, while preserving the layered structure. Compared with MSH, the tribological performances of MSHH as a lubricant additive have been greatly improved. The mechanical properties of MSH and MSHH are analyzed by calculation of elastic constants using density functional theory (DFT). The interactions among dispersant oleic acid (OA), nanoparticles (MSH and MSHH), and Fe tribopairs were investigated by simulations of classical molecular dynamics (CMD) from the views of adsorption energy and confined shear. The tribological mechanism of MSHH as a lubricant additive is proposed based on the decreased shear strength and weakened agglomeration.

References

1.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
2.
Erdemir
,
A.
,
Ramirez
,
G.
,
Eryilmaz
,
O. L.
,
Narayanan
,
B.
,
Liao
,
Y. F.
,
Kamath
,
G.
, and
Sankaranarayanan
,
S. K. R. S.
,
2016
, “
Carbon-Based Tribofilms From Lubricating Oils
,”
Nature
,
536
(
7614
), pp.
67
71
.
3.
Johnson
,
B.
,
Wu
,
H. X.
,
Desanker
,
M.
,
Pickens
,
D.
,
Chung
,
Y. W.
, and
Wang
,
Q. J.
,
2018
, “
Direct Formation of Lubricious and Wear-Protective Carbon Films From Phosphorus- and Sulfur-Free Oil-Soluble Additives
,”
Tribol. Lett.
,
66
(
2
), pp.
223
232
.
4.
Kasrai
,
M.
,
Cutler
,
J. N.
,
Gore
,
K.
,
Canning
,
G.
,
Tan
,
G. M.
, and
Bancroft
,
K. H.
,
1998
, “
The Chemistry of Antiwear Flms Generated by the Combination of ZDDP and MoDTC Examined by X-Ray Absorption Spectroscopy
,”
Tribol. Trans.
,
41
(
1
), pp.
69
77
.
5.
Huai
,
W. J.
,
Chen
,
X. C.
,
Lu
,
F.
,
Zhang
,
C. H.
,
Ma
,
L. R.
, and
Wen
,
S. Z.
,
2020
, “
Tribological Properties of Sulfur- and Phosphorus-Free Organic Molybdenum Compound as Additive in Oil
,”
Tribol. Int.
,
141
, p.
105944
.
6.
Singh
,
S.
,
Chen
,
X. C.
,
Zhang
,
C. H.
,
Gautam
,
R. K.
,
Tyagi
,
R.
, and
Luo
,
J. B.
,
2020
, “
Tribological Performance of Steel With Multi-Layer Graphene Grown by Low-Pressure Chemical Vapor Deposition
,”
ASME J. Tribol.
,
142
(
12
), p.
122101
.
7.
Rawat
,
S. S.
,
Harsha
,
A. P.
,
Khatri
,
O. P.
, and
Wäesche
,
R.
,
2021
, “
Pristine, Reduced, and Alkylated Graphene Oxide as Additives to Paraffin Grease for Enhancement of Tribological Properties
,”
ASME J. Tribol.
,
143
(
2
), p.
021903
.
8.
Delbé
,
P.
,
Thomas
,
K.
,
Himmel
,
D.
,
Mansot
,
J. L.
,
Dubois
,
M.
,
Guérin
,
K.
,
Delabarre
,
C.
, and
Hamwi
,
A.
,
2010
, “
Tribological Properties of Room Temperature Fluorinated Graphite Heat-Treated Under Fluorine Atmosphere
,”
Tribol. Lett.
,
37
(
1
), pp.
31
41
.
9.
Ghosh
,
K.
,
Mazumder
,
S.
,
Hirani
,
H.
,
Roy
,
P.
, and
Mandal
,
N.
,
2021
, “
Enhancement of Dry Sliding Tribological Characteristics of Perforated ZTA Ceramic Composite Filled With Nano MoS2 in High Vacuum
,”
ASME J. Tribol.
,
143
(
6
), p.
061401
.
10.
Wu
,
B.
,
Wang
,
J. H.
,
zhong
,
L.
, and
Huang
,
X. Y.
,
2020
, “
Sliding Wear of WC-Ni-Based Self-Lubricating Composites With the Addition of Fullerene-Like WS2 Nanoparticles Against WC-Ni Cermet
,”
ASME J. Tribol.
,
142
(
4
), p.
044501
.
11.
Charoo
,
M. S.
, and
Wani
,
M. F.
,
2017
, “
Tribological Properties of h-BN Nanoparticles as Lubricant Additive on Cylinder Liner and Piston Ring
,”
Lubr. Sci.
,
29
(
4
), pp.
241
254
.
12.
Nan
,
F.
,
Xu
,
Y.
,
Xu
,
B. S.
,
Gao
,
F.
,
Wu
,
Y. X.
, and
Li
,
Z. G.
,
2015
, “
Tribological Behaviors and Wear Mechanisms of Ultrafine Magnesium Aluminum Silicate Powders as Lubricant Additive
,”
Tribol. Int.
,
81
, pp.
199
208
.
13.
Chen
,
B.
,
Yang
,
X.
,
Zeng
,
X. L.
,
Yang
,
M.
,
Xiao
,
J. R.
,
Fan
,
L. L.
,
Huang
,
Z. L.
,
Zhao
,
F. G.
, and
Zhan
,
G. W.
,
2020
, “
Rational Design of Integrated Nanocatalysts With Hollow Mesoporous Transition Metal Silicates for Chemoselective Hydrogenation of Cinnamaldehyde
,”
Mol. Catal.
,
493
, p.
111069
.
14.
Bermúdez
,
Y. H.
,
Truffault
,
L.
,
Pulcinelli
,
S. H.
, and
Santilli
,
C. V.
,
2018
, “
Sodium Montmorillonite/Ureasil-Poly(Oxyethylene) Nanocomposite as Potential Adsorbent of Cationic dye
,”
Appl. Clay. Sci.
,
152
, pp.
158
165
.
15.
Zhang
,
Y. W.
,
Li
,
Z. P.
,
Yan
,
J. C.
,
Ren
,
T. H.
, and
Zhao
,
Y. D.
,
2016
, “
Tribological Behaviours of Surface-Modified Serpentine Powder as Lubricant Additive
,”
Ind. Lubr. Tribol.
,
68
(
1
), pp.
1
8
.
16.
Rao
,
X.
,
Sheng
,
C. X.
,
Guo
,
Z. W.
,
Zhang
,
X. C.
,
Yin
,
H. B.
,
Xu
,
C.
, and
Yuan
,
C. Q.
,
2022
, “
Anti-Friction and Self-Repairing Abilities of Ultrafine Serpentine, Attapulgite and Kaolin in Oil for the Cylinder Liner-Piston Ring Tribo-Systems
,”
Lubr. Sci.
,
34
(
3
), pp.
210
223
.
17.
Garbar
,
I. I.
,
Sher
,
E.
, and
Shneck
,
R.
,
2000
, “
Structural Mechanism of Action of Some Additives to Lubricant
,”
Ind. Lubr. Tribol.
,
52
(4), pp.
186
191
.
18.
Kierczak
,
J.
,
Pedziwiatr
,
A.
,
Waroszewski
,
J.
, and
Modelska
,
M.
,
2016
, “
Mobility of Ni, Cr and Co in Serpentine Soils Derived on Various Ultrabasic Bedrocks Under Temperate Climate
,”
Geoderma
,
268
, pp.
78
91
.
19.
Zhao
,
F. Y.
,
Bai
,
Z. M.
,
Fu
,
Y.
,
Zhao
,
D.
, and
Yan
,
C. M.
,
2012
, “
Tribological Properties of Serpentine, La(OH)3 and Their Composite Particles as Lubricant Additives
,”
Wear
,
288
, pp.
72
77
.
20.
Guan
,
Z. P.
,
Zhang
,
P,V
,
Wu
,
Z. C.
,
Zeng
,
D. H.
,
Liu
,
J.
,
Wang
,
B. B.
,
Tu
,
X. H.
,
Li
,
S. J.
, and
Li
,
W.
,
2022
, “
Preparation and Tribological Behaviors of Magnesium Silicate Hydroxide-MoS2 Nanoparticles as Lubricant Additive
,”
Wear
,
492/493
, p.
204237
.
21.
Qi
,
X. W.
,
Jia
,
Z. N.
,
Yang
,
Y. L.
, and
Fan
,
Y. B.
,
2011
, “
Characterization and Auto-Restoration Mechanism of Nanoscale Serpentine Powder as Lubricating Oil Additive Under High Temperature
,”
Tribol. Int.
,
44
(
7–8
), pp.
805
810
.
22.
Zhang
,
H.
, and
Chang
,
Q. Y.
,
2021
, “
Enhanced Ability of Magnesium Silicate Hydroxide in Transforming Base Oil Into Amorphous Carbon by Annealing Heat Treatment
,”
Diam. Relat. Mater.
,
117
, pp.
1
11
.
23.
Miyake
,
S.
,
Sekine
,
Y.
,
Noshiro
,
J.
, and
Watanabe
,
S.
,
2004
, “
: Low-Friction and Long-Life Solid Lubricant Films Structured of Nanoperiod Tungsten Disulfide and Molybdenum Disulfide Multilayer
,”
Jpn. J. Appl. Phys.
,
43
(
7R
), pp.
4338
4343
.
24.
Joshi
,
H.
,
Vu
,
T. V.
,
Hieu
,
N. N.
,
Khenata
,
R.
, and
Rai
,
D. P.
,
2021
, “
Mechanical and Thermodynamical Properties of Fe2CoAl a Full-Heusler Alloy Under Hydrostatic Pressure: A DFT study
,”
Mater. Chem. Phys.
,
270
, p.
124792
.
25.
He
,
L.
,
Yung
,
K. L.
,
Xu
,
Y.
, and
Shen
,
Y. W.
,
2007
, “
The Effect of Surface Features on Nanorheology of LCP Melts in Nanochannels by MD Simulation
,”
ASME J. Tribol.
,
129
(
1
), pp.
171
176
.
26.
Zhang
,
H.
, and
Chang
,
Q. Y.
,
2019
, “
Friction-Induced Rehybridization of Hydrothermal Amorphous Carbon in Magnesium Silicate Hydroxide-Based Nanocomposite
,”
Carbon
,
155
, pp.
650
659
.
27.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
28.
Grimme
,
S.
,
Antony
,
J.
,
Ehrlich
,
S.
, and
Krieg
,
H.
,
2010
, “
A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu
,”
J. Chem. Phys.
,
132
(
15
), p.
154104
.
29.
Chen
,
X. Y.
,
Yang
,
J. T.
,
Yasuda
,
K.
,
Koga
,
N.
, and
Zhang
,
H. D.
,
2022
, “
Adsorption Behavior of TEMPO-Based Organic Friction Modifiers During Sliding Between Iron Oxide Surfaces: A Molecular Dynamics Study
,”
Langmuir
,
38
(
10
), pp.
3170
3179
.
30.
Tong
,
Z. F.
,
Xie
,
Y. B.
, and
Zhang
,
Y. H.
,
2018
, “
Molecular Dynamics Simulation on the Interaction Between Polymer Inhibitors and β-Dicalcium Silicate Surface
,”
J. Mol. Liq.
,
259
, pp.
65
75
.
31.
Zhang
,
B. S.
,
Yi
,
X.
,
Gao
,
F.
,
Shi
,
P. J.
,
Xu
,
B. S.
, and
Wu
,
Y. X.
,
2011
, “
Sliding Friction and Wear Behaviors of Surface-Coated Natural Serpentine Mineral Powders as Lubricant Additive
,”
Appl. Surf. Sci.
,
257
(
7
), pp.
2540
2549
.
32.
Yang
,
Y. L.
,
Ma
,
J.
,
Qi
,
X. W.
, and
Meng
,
X. S.
,
2014
, “
Fabrication of Nano Serpentine-Potassium Acetate Intercalation Compound and Its Effect as Additive on Tribological Properties of the Fabric Self-Lubricating Liner
,”
Wear
,
318
(
1–2
), pp.
202
211
.
33.
Zaremba
,
T.
,
Krząkaa
,
A.
,
Piotrowski
,
J.
, and
Garczorz
,
D.
,
2010
, “
Study on the Thermal Decomposition of Chrysotile Asbestos
,”
J. Therm. Anal. Calorim.
,
101
(
2
), pp.
479
485
.
34.
Šontevska
,
V.
,
Jovanovski
,
G.
, and
Makreski
,
P.
,
2007
, “
Minerals From Macedonia. Part XIX. Vibrational Spectroscopy as Identificational Tool for Some Sheet Silicate Minerals
,”
J. Mol. Struct.
,
834/836
, pp.
318
327
.
35.
Anbalagan
,
G.
,
Sivakumar
,
G.
,
Prabakaran
,
A. R.
, and
Gunasekaran
,
S.
,
2010
, “
Spectroscopic Characterization of Natural Chrysotile
,”
Vib. Spectrosc.
,
52
(
2
), pp.
122
127
.
36.
Valouma
,
A.
,
Verganelaki
,
A.
,
Tetoros
,
I.
,
Maravelaki-Kalaitzaki
,
P.
, and
Gidarakos
,
E.
,
2017
, “
Magnesium Oxide Production From Chrysotile Asbestos Detoxification With Oxalic Acid Treatment
,”
J. Hazard. Mater.
,
336
, pp.
93
100
.
37.
Scholtzová
,
E.
, and
Tunega
,
D.
,
2020
, “
Prediction of Mechanical Properties of Grafted Kaolinite—A DFT Study
,”
Appl. Clay. Sci.
,
193
, p.
105692
.
38.
Yu
,
H. X.
,
Chen
,
H. J.
,
Zheng
,
Z. W.
,
Qiao
,
D.
,
Feng
,
D. P.
,
Gong
,
Z. B.
, and
Dong
,
G. J.
,
2022
, “
Effect of Functional Groups on Tribological Properties of Lubricants and Mechanism Investigation
,”
Friction
,
011
(
6
), pp.
911
926
.
39.
Chaudhary
,
M. K.
,
Prajapati
,
P.
,
Srivastava
,
K.
,
Joshi
,
B. D.
, and
Ayala
,
A. P.
,
2021
, “
Molecular Interactions and Vibrational Properties of Ricobendazole: Insights From Quantum Chemical Calculation and Spectroscopic Methods
,”
J. Mol. Struct.
,
1230
, p.
129889
.
40.
Li
,
Y.
,
Liu
,
Y. Y.
,
Wang
,
H. W.
,
Xiong
,
X. H.
,
Wei
,
P.
, and
Li
,
F. S.
,
2013
, “
Synthesis, Crystal Structure, Vibration Spectral, and DFT Studies of 4-Aminoantipyrine and Its Derivatives
,”
Molecules
,
18
(
1
), pp.
877
893
.
41.
Campen
,
S.
,
Green
,
J. H.
,
Lamb
,
G. D.
, and
Spikes
,
H. A.
,
2015
, “
In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM; Saturated and Mono-Unsaturated Carboxylic Acids
,”
Tribol. Int.
,
57
(
2
), pp.
805
810
.
You do not currently have access to this content.