Abstract

In this study, a novel test rig was designed and developed to investigate roller slip, tilt, and skew in a spherical roller bearing (SRB). The test rig utilized a double-row 22313 SRB and was designed to allow for direct visual access to each row. A high-speed camera was used to capture the motion and angular position of the various rollers as they traversed the bearing. Successive frames captured from the videos were analyzed to determine roller slip and the SRB load zone. Roller tilt and skew angles were also measured by inserting a nearly weightless pin into the center of a roller. In a similar manner, high-speed videography was used to assess the tilt and skew of the roller for a complete revolution of the roller around the inner race of the SRB. The dynamic behavior of the rollers was then corroborated with a previously developed SRB dynamic bearing model (DBM). The experimental and analytical results indicate that the roller tilt angle increases with axial load, remains constant with speed, and decreases with increasing radial load when the roller is located in the load zone. Further, roller skew in the load zone increases with axial load and shaft speed; however, it decreases with the radial load. The results indicate that when the radial-to-axial load ratio is greater than 4, roller tilt and skew are minimized. Due to roller intermittent slip and roller-cage pocket collision in the unload zone, tilt and skew become chaotic. The magnitude of the tilt and skew in the unload zone is directly related to the roller-race and roller-cage pocket clearances, respectively.

References

1.
The Insight Partners
, “
Wind Turbine Foundation Market Size and Industry Growth by 2028
,” www.theinsightpartners.com/pr/wind-turbine-foundation-market, Last Modified December 2021, Accessed June 2022.
2.
SKF Inc.
, “
SKF Spherical Roller Bearings for Wind Turbine Main Shafts
,” www.skf.com/binaries/pub12/Images/0901d196804f4fbc-16790_EN_SKF-spherical-roller-bearings-for-wind-turbine-main-shafts_tcm_12-279354.pdf, Last Modified July 2018, Accessed June 2022.
3.
Gupta
,
P. K.
,
1988
, “
On the Geometrical Imperfections in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
110
(
1
), pp.
13
18
.
4.
Liu
,
X.
,
Li
,
S.
,
Yang
,
P.
, and
Yang
,
P.
,
2013
, “
On the Lubricating Mechanism of Roller Skew in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
56
(
6
), pp.
929
942
.
5.
Kellstrom
,
M.
,
Fogelstrom
,
J.
, and
Wittmeyer
,
H.
,
1996
, “
Roller Bearing Provided With Roller Skew Control and Long Life Characteristics
,” U.S. Patent US5586826A.
6.
Kellstrom
,
M.
,
2000
, “
Roller Bearing With Means for Giving the Rollers a Positive Skew Angle
,” International Publication of World Intellectual Property Organization WO1998022724A1.
7.
Kellstrom
,
M.
,
1979
, “
Rolling Contact Guidance of Rollers in Spherical Roller Bearings
,”
Joint ASME/ASLE Lubrication Conference
,
Dayton, OH
,
Oct. 16–18
.
8.
Nélias
,
D.
,
Bercea
,
I.
, and
Mitu
,
N.
,
2003
, “
Analysis of Double-Row Tapered Roller Bearings, Part II–Results: Prediction of Fatigue Life and Heat Dissipation
,”
Tribol. Trans.
,
46
(
2
), pp.
240
247
.
9.
Harris
,
T. A.
,
Kotzalas
,
M. N.
, and
Yu
,
W. K.
,
1998
, “
On the Causes and Effects of Roller Skewing in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
41
(
4
), pp.
572
578
.
10.
Kleckner
,
R. J.
, and
Pirvics
,
J.
,
1982
, “
Spherical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
104
(
1
), pp.
99
108
.
11.
Krzemiński-Freda
,
H.
, and
Raczyński
,
A.
,
1984
, “
The Effect of the Working Surface Shape on the Power Loss in Spherical Roller Bearings
,”
Wear
,
96
(
1
), pp.
61
74
.
12.
Raczyński
,
A.
,
1992
, “
Effect of Working Surface Shape on Power Loss in Taper Roller Bearings
,”
Wear
,
152
(
1
), pp.
31
45
.
13.
Cretu
,
S.
,
2011
, “
Machined Brass and Pressed Steel Bearing Cages: A Comparative Study
,”
RKB Tech. Rev.
14.
Majdoub
,
F.
,
Saunier
,
L.
,
Sidoroff-Coicaud
,
C.
, and
Mevel
,
B.
,
2020
, “
Experimental and Numerical Roller Skew in Tapered Roller Bearings
,”
Tribol. Int.
,
145
, pp.
106
142
.
15.
Osorno
,
D.
,
2005
, “
Rolling Element Skew Measurement in a Spherical Roller Bearing Utilizing a CPD Probe
,”
Master’s thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
16.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
2000
, “
Rolling Element Skew in Tapered Roller Bearings
,”
Tribol. Trans.
,
43
(
3
), pp.
564
568
.
17.
Gupta
,
P. K.
,
1989
, “
On the Dynamics of a Tapered Roller Bearing
,”
ASME J. Tribol.
,
111
(
2
), pp.
278
287
.
18.
Wu
,
Z. H.
,
Xu
,
Y. Q.
, and
Deng
,
S. E.
,
2018
, “
Analysis of Dynamic Characteristics of Grease-Lubricated Tapered Roller Bearings
,”
Shock Vib.
,
2018
, p.
7183042
.
19.
Harris
,
T. A. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
New York
.
20.
Nypan
,
L. J.
,
1982
, “
Roller Skewing Behavior in Roller Bearings
,”
ASME J. Lubr. Technol.
,
104
(
3
), pp.
311
320
.
21.
Nypan
,
L. J.
,
1981
, “
Roller Skewing Measurements in Cylindrical Roller Bearings
,” NASA Contractor Report 3381.
22.
Bair
,
S. S.
, and
Winer
,
W. O.
,
1987
,
Needle Bearing Investigations
,
Georgia Institute of Technology Rheology and Tribology Laboratory
,
Atlanta, GA
.
23.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
1999
, “
A Study on Rolling Element Skew Measurement in a Tapered Roller Bearing With a Specialized Capacitance Probe
,”
ASME J. Tribol.
,
122
(
3
), pp.
534
538
.
24.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
1999
, “
On the Measurement of Skew of Tapered Roller Bearings
,”
Tribol. Lett.
,
6
(
3/4
), p.
221
223
.
25.
Falodi
,
A.
,
Chen
,
Y. K.
,
Caspall
,
M.
,
Earthrowl
,
B.
, and
Dell
,
D.
,
2012
, “
On the Measurement of Roller Skew of Tapered Roller Bearings
,”
Appl. Mech. Mater., Trans. Tech. Publ.
,
217–219
, pp.
2328
2331
.
26.
Savage
,
M.
, and
Loewenthal
,
S. H.
,
1982
, “
Kinematic Correction for Roller Skewing
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
175
184
.
27.
Majdoub
,
F.
, and
Mevel
,
B.
,
2018
, “
Kinematic Equilibrium of Rollers in Tapered Rolling Bearings
,”
STLE Conference
,
Minneapolis, MN
,
May 20–24
.
28.
Majdoub
,
F.
, and
Mevel
,
B.
,
2019
, “
Kinematic Equilibrium of Rollers in Tapered Roller Bearings
,”
Tribol. Trans.
,
62
(
4
), pp.
567
579
.
29.
Nelias
,
D.
,
Bercea
,
I.
, and
Paleu
,
V.
,
2008
, “
Prediction of Roller Skewing in Tapered Roller Bearings
,”
Tribol. Trans.
,
51
(
2
), pp.
128
139
.
30.
Deng
,
S.
,
Gu
,
J.
,
Cui
,
Y.
, and
Zhang
,
W.
,
2018
, “
Dynamic Analysis of a Tapered Roller Bearing
,”
Ind. Lubr. Tribol.
,
70
(
1
), pp.
191
200
.
31.
Zhang
,
C.
,
Gu
,
L.
,
Mao
,
Y.
, and
Wang
,
L.
,
2019
, “
Modeling the Frictional Torque of a Dry-Lubricated Tapered Roller Bearing Considering the Roller Skewing
,”
Friction
,
7
(
6
), pp.
551
563
.
32.
Shafiee
,
A.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Wilmer
,
M. G.
,
2022
, “
Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing
,”
ASME J. Tribol.
,
144
(
7
), p.
071201
.
33.
Wilmer
,
M. G.
,
2021
,
Timken Sponsorship Communication
.
34.
Hamrock
,
B. J.
,
Schmid
,
B. J.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
35.
Russell
,
T.
,
Shafiee
,
A.
,
Conley
,
B.
, and
Sadeghi
,
F.
,
2022
, “
Evaluating Load Distribution at the Bearing-Housing Interface Using Thin Film Pressure Sensors
,”
Tribol. Int.
,
165
, p.
107293
.
36.
Stacke
,
L. E.
,
Fritzson
,
D.
, and
Nordling
,
P.
,
1999
, “
BEAST—A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
213
(
2
), pp.
63
71
.
You do not currently have access to this content.