Abstract

The slip behavior of four cage types was studied for an NU215 cylindrical roller bearing under radial forces lower than the minimum recommended by the manufacturer by performing force, speed, and oil flow ramp tests. In comparison, a specially designed full complement bearing was also tested as an alternative to the caged bearing variant. All the tested bearings started to operate slip-free at higher forces than those recommended by the bearing manufacturers. In addition to that, the increase in oil flowrate or rotational speed would increase the set slip under insufficient radial forces. Single-part outer-ring-guided brass cage experienced lower slip than its two-part equivalent while roller guidance possessed the least slip tendency among the tested cages. The polyamide cage offered the lightest weight reduction at the expense of a higher slip, whereas the full complement bearings also offer higher load-carrying capacity at the expense of higher slip.

References

1.
Qian
,
W.
,
2013
,
Dynamic Simulation of Cylindrical Roller Bearings
,
Rheinisch-Westfälische Technische Hochschule Aachen
,
Germany
, pp.
1
117
.
2.
Tassone
,
B. A.
,
1975
, “
Roller Bearing Slip and Skidding Damage
,”
J. Aircr.
,
12
(
4
), pp.
281
287
.
3.
Stacke
,
L. E.
, and
Fritzson
,
D.
,
2001
, “
Dynamic Behaviour of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
6
), pp.
499
508
.
4.
Liu
,
Y.
,
Chen
,
Z.
,
Tang
,
L.
, and
Zhai
,
W.
,
2021
, “
Skidding Dynamic Performance of Rolling Bearing With Cage Flexibility Under Accelerating Conditions
,”
Mech. Syst. Signal Process.
,
150
, p.
107257
.
5.
Selvaraj
,
A.
, and
Marappan
,
R.
,
2011
, “
Experimental Analysis of Factors Influencing the Cage Slip in Cylindrical Roller Bearing
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
635
644
.
6.
Hou
,
Y.
, and
Wang
,
X.
,
2020
, “
Development of an Experimental System to Measure the Cage Slip of Cylindrical Roller Bearing
,”
Struct. Health. Monit.
,
19
(
2
), pp.
510
519
.
7.
Guo
,
Y.
, and
Keller
,
J.
,
2020
, “
Validation of Combined Analytical Methods to Predict Slip in Cylindrical Roller Bearings
,”
Tribol. Int.
,
148
, p.
106347
.
8.
Pape
,
F.
,
Petzold
,
M.
, and
Poll
,
G.
,
2019
, “
Computational Investigation of Crack Inducing Forces on Bearing Surfaces Regarding the Tribofilm Structure
,”
Int. J. Comput. Methods Exp. Meas.
,
7
(
4
), pp.
340
349
.
9.
Brückner
,
C.
,
Miedl
,
J.
, and
Behrens
,
J.
,
2014
,
Ermitteln des Schlupfverhaltens von Zylinderrollenlagern bei unterschiedlichen Betriebsbedingungen
.
10.
Rumbarger
,
J. H.
,
Filetti
,
E. G.
, and
Gubernick
,
D.
,
1973
, “
Gas Turbine Engine Mainshaft Roller Bearing-System Analysis
,”
ASME J. Tribol.
,
95
(
4
), pp.
401
416
.
11.
Nakajima
,
A.
, and
Mawatari
,
T.
,
2006
,
Solid Mechanics and Its Applications
, Vol.
134
,
Springer Nature
,
Switzerland
, pp.
1
344
.
12.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2018
, “
Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life
,”
ASME J. Tribol.
,
140
(
2
), pp.
1
11
.
13.
Klecka
,
M. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2013
, “
Microstructure-Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels
,”
Tribol. Trans.
,
56
(
6
), pp.
1046
1059
.
14.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
Tribol. Int.
,
133
, pp.
160
171
.
15.
Cheenady
,
A. A.
,
Arakere
,
N. K.
, and
Londhe
,
N. D.
,
2020
, “
Accounting for Microstructure Sensitivity and Plasticity in Life Prediction of Heavily Loaded Contacts Under Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
3
), pp.
539
549
.
16.
Bhattacharyya
,
A.
,
Londhe
,
N.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2017
, “
A New Approach Towards Life Prediction of Case Hardened Bearing Steels Subjected to Rolling Contact Fatigue
,”
Mater. Perform. Charact.
,
6
(
4
), pp.
656
677
.
17.
Deng
,
S.
,
Lu
,
Y.
,
Zhang
,
W.
,
Sun
,
X.
, and
Lu
,
Z.
,
2018
, “
Cage Slip Characteristics of a Cylindrical Roller Bearing With a Trilobe-Raceway
,”
Chin. J. Aeronaut.
,
31
(
2
), pp.
351
362
.
18.
Fingerle
,
T.
,
2017
,
Experimentelle und simulative Untersuchung des Schlupfverhaltens von Kegelrollenlagern
,
Universität Kaiserslautern
,
Germany
, pp.
1
153
.
19.
Fingerle
,
T.
,
Greib
,
K.
, and
Sauer
,
B.
,
2016
, “
An Experimental Approach on Slip Behaviour of Tapered Roller Bearings
,”
Proceedings of the 1st Bearing World Conference
,
Hannover, Germany
,
Apr. 12–13
, pp.
29
47
.
20.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
126
(
4
), pp.
681
689
.
21.
Choe
,
B.
,
Lee
,
J.
,
Jeon
,
D.
, and
Lee
,
Y.
,
2019
, “
Experimental Study on Dynamic Behavior of Ball Bearing Cage in Cryogenic Environments, Part I: Effects of Cage Guidance and Pocket Clearances
,”
Mech. Syst. Signal Process.
,
115
, pp.
545
569
.
22.
Choe
,
B.
,
Kwak
,
W.
,
Jeon
,
D.
, and
Lee
,
Y.
,
2019
, “
Experimental Study on Dynamic Behavior of Ball Bearing Cage in Cryogenic Environments, Part II: Effects of Cage Mass Imbalance
,”
Mech. Syst. Signal Process.
,
116
, pp.
25
39
.
23.
Creju
,
S.
,
Bercea
,
I.
, and
Mitu
,
N.
,
1995
, “
A Dynamic Analysis of Tapered Roller Bearing Under Fully Flooded Conditions Part 1: Theoretical Formulation
,”
Wear
,
188
(
1–2
), pp.
1
10
.
24.
Creţu
,
S.
,
Mitu
,
N.
, and
Bercea
,
I.
,
1995
, “
A Dynamic Analysis of Tapered Roller Bearings Under Fully Flooded Conditions Part 2: Results
,”
Wear
,
188
(
1–2
), pp.
11
18
.
25.
Boness
,
R. J.
,
1970
, “
The Effect of Oil Supply on Cage and Roller Motion in a Lubricated Roller Bearing
,”
ASME J. Tribol.
,
92
(
1
), pp.
39
51
.
26.
Chang
,
L.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1990
, “
Analysis of High-Speed Cylindrical Roller Bearings Using a Full Elastohydrodynamic Lubrication Model Part 1: Formulation
,”
Tribol. Trans.
,
33
(
2
), pp.
274
284
.
27.
Chang
,
L.
,
Conry
,
T. F.
, and
Gusano
,
C.
,
1990
, “
Analysis of High-Speed Cylindrical Roller Bearings Using a Full Elastohydrodynamic Lubrication Model Part 2: Results
,”
Tribol. Trans.
,
33
(
2
), pp.
285
291
.
28.
Flamand
,
L.
,
Berthe
,
D.
, and
Godet
,
M.
,
1981
, “
On the Traction Behavior of Several Lubricants
,”
ASME J. Tribol.
,
103
(
1
), pp.
55
64
.
29.
Tung Liao
,
N.
, and
Lin
,
J. F.
,
2002
, “
Ball Bearing Skidding Under Radial and Axial Loads
,”
Mech. Mach. Theory
,
37
(
1
), pp.
91
113
.
30.
Tu
,
W.
,
Shao
,
Y.
, and
Mechefske
,
C. K.
,
2012
, “
An Analytical Model to Investigate Skidding in Rolling Element Bearings During Acceleration
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2451
2458
.
31.
Ford
,
R. A. J.
, and
Foord
,
C. A.
,
1974
, “
The Effects of Elastohydrodynamic Traction Behaviour on Cage Slip in Roller Bearings
,”
ASME J. Lubr. Techn.
,
96
(
3
), pp.
370
375
.
32.
O’Brien
,
K. T.
, and
Taylor
,
C. M.
,
1973
, “
Cage Slip in Roller Bearings
,”
J. Mech. Eng. Sci.
,
15
(
5
), pp.
370
378
.
33.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Techn.
,
101
(
3
), pp.
293
302
.
34.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part II: Cylindrical Roller Bearing Results
,”
ASME J. Lubr. Techn.
,
101
(
3
), pp.
305
311
.
35.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part IV: Ball Bearing Results
,”
ASME J. Lubr. Techn.
,
101
(
3
), pp.
319
326
.
36.
Harris
,
T. A.
,
1966
, “
An Analytical Method to Predict Skidding in High Speed Roller Bearings
,”
ASLE Trans.
,
9
(
3
), pp.
229
241
.
37.
Cocks
,
M.
, and
Tallian
,
T. E.
,
1971
, “
Sliding Contacts in Rolling Bearings
,”
ASLE Trans.
,
14
(
1
), pp.
32
40
.
38.
Rowe
,
F. D.
,
1971
, “
Diagnosis of Rolling Contact Bearing Damage
,”
Tribology
,
4
(
3
), pp.
137
146
.
39.
Stuhler
,
P.
, and
Nagler
,
N.
,
2021
, “
Stand der Technik: Anschmierungen in Radial-Zylinderrollenlagern. Definition, Mechanismus, Einflüsse, Abhilfen und Potenziale
,”
Forschung im Ingenieurwesen/Engineering Research
,
86
, pp.
1
20
.
40.
Evans
,
R. D.
,
Barr
,
T. A.
,
Houpert
,
L.
, and
Boyd
,
S. V.
,
2013
, “
Prevention of Smearing Damage in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
56
(
5
), pp.
703
716
.
41.
Fowell
,
M.
,
Ioannides
,
S.
, and
Kadiric
,
A.
,
2014
, “
An Experimental Investigation Into the Onset of Smearing Damage in Nonconformal Contacts With Application to Roller Bearings
,”
Tribol. Trans.
,
57
(
3
), pp.
472
488
.
42.
Scherb
,
B. J.
, and
Zech
,
J.
,
2001
, “
A Study on the Smearing and Slip Behaviour of Radial Cylindrical Roller Bearings
,”
Schriftenreihe der Georg-Simon-Ohm-Hochschule
,
1
(
5
), pp.
1
19
.
43.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil II: Diskussion der Ergebnisse Sowie Deren Anwendungen
,”
Antriebstechnik
,
40
(
12
), pp.
35
38
.
44.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil I: Kinematisches Verhalten in Bezug auf den Schadenmechanismus der Anschmierungen
,”
Antriebstechnik
,
40
(
11
), pp.
55
58
.
45.
Bowman
,
W. F.
, and
Stachowiak
,
G. W.
,
1996
, “
A Review of Scuffing Models
,”
Tribol. Lett.
,
2
(
2
), pp.
113
131
.
46.
Cutiongco
,
E. C.
, and
Chung
,
Y. W.
,
1994
, “
Prediction of Scuffing Failure Based on Competitive Kinetics of Oxide Formation and Removal: Application to Lubricated Sliding of AISI 52100 Steel on Steel
,”
Tribol. Trans.
,
37
(
3
), pp.
622
628
.
47.
Bujoreanu
,
C.
,
Cretu
,
S.
, and
Nelias
,
D.
,
2003
, “
Scuffing Behaviour in Angular Contact Ball-Bearings
,”
Ann. Univ. “Dunărea Jos” Galaţi Fascicle Viii Tribol.
,
II
(
2003
), pp.
33
39
.
48.
Dyson
,
A.
,
1975
, “
Scuffing—A Review
,”
Tribol. Int.
,
8
(
2
), pp.
77
87
.
49.
Loos
,
J.
,
Blass
,
T.
,
Franke
,
J.
,
Kruhoeffer
,
W.
, and
Bergmann
,
I.
,
2016
, “
Influences on Generation of White Etching Crack Networks in Rolling Bearings
,”
J. Mech. Eng. Autom.
,
6
(
2
), pp.
85
94
.
50.
Gould
,
B.
, and
Greco
,
A.
,
2015
, “
The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks
,”
Tribol. Lett.
,
60
(
2
), pp.
1
13
.
51.
Hiltscher
,
G.
,
1989
,
Anschmierungen bei Wälzlagern: Ein Beitrag zur Theoretischen und Experimentellen Lösung des Problems
,
FAU Erlangen-Nürnberg
,
Germany
, pp.
1
198
.
52.
Hamer
,
C.
,
1991
,
Smearing in Rolling Element Bearings
,
Imperical College
,
London
.
53.
Poplawski
,
J. V.
,
1971
, “
Slip and Cage Forces in a High-Speed Roller Bearing
,”
ASME. J. Lubr. Tech.
,
94
(
2
), pp.
143
150
.
54.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Phase Transformations Associated with Micropitting in Rolling/Sliding Contacts
,”
J. Mater. Sci.
,
40
(
18
), pp.
4767
4774
.
55.
Singh
,
H.
,
Pulikollu
,
R. V.
,
Hawkins
,
W.
, and
Smith
,
G.
,
2017
, “
Investigation of Microstructural Alterations in Low- and High-Speed Intermediate-Stage Wind Turbine Gearbox Bearings
,”
Tribol. Lett.
,
65
(
3
), pp.
1
13
.
56.
Gegner
,
J.
, and
Nierlich
,
W.
,
2018
, “
Service Loading of Rolling Bearings in Wind Turbine Gearboxes: X-Ray Diffraction Material Response Analysis of White Etching Crack Premature Failures
,”
Tribol. Trans.
,
61
(
2
), pp.
269
278
.
57.
Greco
,
A.
,
Sheng
,
S.
,
Keller
,
J.
, and
Erdemir
,
A.
,
2013
, “
Material Wear and Fatigue in Wind Turbine Systems
,”
Wear
,
302
(
1–2
), pp.
1583
1591
.
58.
Al-Tameemi
,
H. A.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2019
, “
Damage Characterisation of White Etching Cracks in a Black Oxide Coated Wind Turbine Gearbox Bearing
,”
Wear
,
432–433
, p.
102923
.
59.
Vaes
,
D.
,
Guo
,
Y.
,
Tesini
,
P.
, and
Keller
,
J.
,
2019
,
Investigation of Roller Sliding in Wind Turbine Gearbox High-Speed-Shaft Bearings
, www.nrel.gov/publications.
60.
Keller
,
J.
,
Guo
,
Y.
, and
Sethuraman
,
L
,
2017
,
Uptower Investigation of Main and High-Speed-Shaft Bearing Reliability
, www.nrel.gov/publications.
61.
Gould
,
B.
, and
Greco
,
A.
,
2016
, “
Investigating the Process of White Etching Crack Initiation in Bearing Steel
,”
Tribol. Lett.
,
62
(
2
), pp.
1
14
.
62.
Kotzalas
,
M. N.
, and
Doll
,
G. L.
,
2010
, “
Tribological Advancements for Reliable Wind Turbine Performance
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
368
(
1929
), pp.
4829
4850
.
63.
Musial
,
W.
,
Butterfield
,
S.
, and
McNiff
,
B.
,
2007
, “
Improving Wind Turbine Gearbox Reliability
,”
European Wind Energy Conference Exhibition 2007, EWEC 2007
,
Milan, Italy
,
May 7–10
.
64.
Ruellan
,
A.
,
Kleber
,
X.
,
Ville
,
F.
,
Cavoret
,
J.
, and
Liatard
,
B.
,
2015
, “
Understanding White Etching Cracks in Rolling Element Bearings: Formation Mechanisms and Influent Tribochemical Drivers
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
8
), pp.
886
901
.
65.
Manieri
,
F.
,
Stadler
,
K.
,
Morales-Espejel
,
G. E.
, and
Kadiric
,
A.
,
2019
, “
The Origins of White Etching Cracks and Their Significance to Rolling Bearing Failures
,”
Int. J. Fatigue
,
120
, pp.
107
133
.
66.
Gutierrez Guzman
,
F. G. A.
,
2020
,
White Etching Cracks (WEC) in Ölgeschmierten Wälzkontakten
,
Verlagsgruppe Mainz GmbH
,
Germany
.
67.
Gutiérrez Guzmán
,
F.
,
Oezel
,
M.
,
Jacobs
,
G.
,
Burghardt
,
G.
,
Broeckmann
,
C.
, and
Janitzky
,
T.
,
2017
, “
Reproduction of White Etching Cracks Under Rolling Contact Loading on Thrust Bearing and Two-Disc Test Rigs
,”
Wear
,
390–391
, pp.
23
32
.
68.
Guzmán
,
F. G.
,
Oezel
,
M. O.
,
Jacobs
,
G.
,
Burghardt
,
G.
,
Broeckmann
,
C.
, and
Janitzky
,
T.
,
2018
, “
Influence of Slip and Lubrication Regime on the Formation of White Etching Cracks on a Two-Disc Test Rig
,”
Lubricants
,
6
(
1
), pp.
1
8
.
69.
Evans
,
M. H.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2014
, “
Formation Mechanisms of White Etching Cracks and White Etching Area Under Rolling Contact Fatigue
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
10
), pp.
1047
1062
.
70.
Haque
,
T.
,
Korres
,
S.
,
Carey
,
J. T.
,
Jacobs
,
P. W.
,
Loos
,
J.
, and
Franke
,
J.
,
2018
, “
Lubricant Effects on White Etching Cracking Failures in Thrust Bearing Rig Tests
,”
Tribol. Trans.
,
61
(
6
), pp.
979
990
.
71.
Franke
,
J.
,
Carey
,
J. T.
,
Korres
,
S.
,
Haque
,
T.
,
Jacobs
,
P. W.
,
Loos
,
J.
, and
Kruhoeffer
,
W.
,
2018
, “
White Etching Cracking—Simulation in Bearing Rig and Bench Tests
,”
Tribol. Trans.
,
61
(
3
), pp.
403
413
.
72.
Kruhöffer
,
W.
, and
Loos
,
J.
,
2017
, “
WEC Formation in Rolling Bearings Under Mixed Friction: Influences and ‘Friction Energy Accumulation’ as Indicator
,”
Tribol. Trans.
,
60
(
3
), pp.
516
529
.
73.
Richardson
,
A. D.
,
Evans
,
M. H.
,
Wang
,
L.
,
Wood
,
R. J. K.
,
Ingram
,
M.
, and
Meuth
,
B.
,
2018
, “
The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel
,”
Tribol. Lett.
,
66
(
1
), pp.
1
23
.
74.
Danielsen
,
H. K.
,
Gutiérrez Guzmán
,
F.
,
Muskulus
,
M.
,
Rasmussen
,
B. H.
,
Shirani
,
M.
,
Cornel
,
D.
,
Sauvage
,
P.
,
Wu
,
J.
,
Petrov
,
R.
, and
Jacobs
,
G.
,
2019
, “
FE8 Type Laboratory Testing of White Etching Crack (WEC) Bearing Failure Mode in 100Cr6
,”
Wear
,
434–435
, p.
202962
.
75.
Evans
,
M. H.
,
Richardson
,
A. D.
,
Wang
,
L.
,
Wood
,
R. J. K.
, and
Anderson
,
W. B.
,
2014
, “
Confirming Subsurface Initiation at Non-Metallic Inclusions as One Mechanism for White Etching Crack (WEC) Formation
,”
Tribol. Int.
,
75
, pp.
87
97
.
76.
Tarigan
,
B.
,
Schwarze
,
H.
,
Loos
,
J.
,
Blass
,
T.
, and
Kruhöffer
,
W.
,
2018
, “
WEC Failure on the Inner Ring of Roller Bearings Under Dynamic Conditions
,”
Bearing World J.
,
3
(
1
), pp.
87
92
.
77.
Garabedian
,
N. T.
,
Gould
,
B. J.
,
Doll
,
G. L.
, and
Burris
,
D. L.
,
2018
, “
The Cause of Premature Wind Turbine Bearing Failures: Overloading or Underloading?
,”
Tribol. Lubr. Technol.
,
74
(
7
), pp.
60
74
.
78.
Helsen
,
J.
,
Guillaume
,
P.
,
Guo
,
Y.
, and
Keller
,
J.
,
2016
, “
Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events
,”
ICSV 2016—23rd International Congress on Sound and Vibration From Ancient to Modern Acoustics
,
Athens, Greece
,
July 10–14
.
79.
Schaeffler
,
2018
,
Wälzlager: Technische Grundlagen und Produktdaten zur Gestaltung von Wälzlagerungen
,
Schaeffler Technologies AG & Co. KG
,
Germany
, pp.
1
1808
.
80.
SKF
,
2013
,
SKF Wälzlagerkatalog
.
81.
Bajer
,
P.
,
2016
,
Einflussgrößen auf das Schlupfverhalten von Wälzlagern in Generatorgetrieben
,
TU Kaiserslautern
,
Germany
.
82.
Spechtel
,
B.
,
2002
,
FVA 341—Winkelbeschleunigung-Lagerverhalten: Untersuchungen zum Verhalten von Wälzlagern Unter Hohen Winkelbeschleunigungen
,
FVA
,
Germany
.
83.
Lippert
,
R.
,
1999
,
Käfigzylinderrollenlager für Vibrationsmachienen
,
INA-Sonderdruck aus 'Antriebtechnik'
,
Germany
, pp.
1
6
.
84.
Damiens
,
B.
,
Lubrecht
,
A. A.
, and
Cann
,
P. M.
,
2004
, “
Influence of Cage Clearance on Bearing Lubrication
,”
Tribol. Trans.
,
47
(
1
), pp.
2
6
.
85.
2018
,
DIN ISO 15312:2019-04, Rolling Bearings – Thermal Speed Rating – Calculation (ISO 15312:2018)
.
86.
Wood
,
R. A. E.
,
1972
, “
Rolling Bearing Cages
,”
Tribology
,
5
(
1
), pp.
14
21
.
87.
Munro
,
G. J.
,
Watters
,
R. B.
, and
Roberts
,
E. W.
,
2007
,
The Impact of Cage Design on Ball Bearing Torque Behaviour
,
Eur.Sp. Agency, (Special Publ.ESA SP, (SP-653)
,
USA
, pp.
1
8
.
88.
Choe
,
B.
,
Lee
,
J.
,
Jeon
,
D.
, and
Lee
,
Y.
,
2018
, “
Numerical Study of Cage Dynamics Focused on Hydrodynamic Effects of Guidance Land Clearances for Different Ball-Pocket Clearances in Cryogenic Environments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
042502
.
89.
Schwarz
,
S.
,
Grillenberger
,
H.
,
Tremmel
,
S.
, and
Wartzack
,
S.
,
2022
, “
Prediction of Rolling Bearing Cage Dynamics Using Dynamic Simulations and Machine Learning Algorithms
,”
Tribol. Trans.
,
0
(
0
), pp.
1
17
.
90.
Gupta
,
P. K.
,
1991
, “
Dynamic Loads and Cage Wear in High-Speed Rolling Bearings
,”
Wear
,
147
(
1
), pp.
119
134
.
91.
Houpert
,
L.
,
1984
, “
Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings
,”
Trans. ASME
,
107
, pp.
1
6
.
92.
Gupta
,
P. K.
,
Dill
,
J. F.
,
Artuso
,
J. W.
, and
Forster
,
N. H.
,
1986
, “
Ball Bearing Response to Cage Unbalance
,”
ASME J. Tribol.
,
108
(
3
), pp.
462
466
.
93.
Gupta
,
P. K.
,
1991
, “
Cage Unbalance and Wear in Roller Bearings
,”
Wear
,
147
(
1
), pp.
105
118
.
94.
Gupta
,
P. K.
,
1991
, “
Modeling of Instabilities Induced by Cage Clearances in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
34
(
1
), pp.
1
8
.
95.
Harris
,
T. A.
, and
Mindel
,
M. H.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
96.
2010
,
DIN ISO 281:2010-10, Rolling bearings – Dynamic Load Ratings and Rating Life
.
97.
Poplawski
,
J. V.
,
Peters
,
S. M.
, and
Zaretsky
,
E. V.
,
2001
, “
Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction—Part I: Comparison of Bearing Life Theories
,”
Tribol. Trans.
,
44
(
3
), pp.
339
350
.
98.
Poplawski
,
J. V.
,
Peters
,
S. M.
, and
Zaretsky
,
E. V.
,
2001
, “
Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction—Part II: Comparison of Roller Profiles
,”
Tribol. Trans.
,
44
(
3
), pp.
417
427
.
99.
Tarigan
,
B.
,
Schwarze
,
H.
,
Loos
,
J.
, and
Blass
,
T.
,
2017
, “
Prüfstand zur Erprobung der WEC-Bildung an Wälzlagern Unter Drehdynamik
,”
GfT-Gesellschaft für Tribologie
,
Göttingen
,
September
.
100.
Dawoud
,
M.
,
Beitler
,
S.
,
Schwarze
,
H.
, and
Loos
,
J.
,
2020
, “
WEC Formation Under High Dynamic Operation Conditions
,”
GfT-Gesellschaft für Tribologie
,
Online
,
09.2020
.
101.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Techn.
,
101
(
3
), pp.
312
318
.
102.
Nogi
,
T.
,
Maniwa
,
K.
, and
Matsuoka
,
N.
,
2018
, “
A Dynamic Analysis of Cage Instability in Ball Bearings
,”
ASME J. Tribol.
,
140
(
1
), p.
011101
.
103.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2016
, “
An Investigation on the Occurrence of Stable Cage Whirl Motions in Ball Bearings Based on Dynamic Simulations
,”
Tribol. Int.
,
103
, pp.
12
24
.
104.
Merriman
,
T. L.
, and
Kannel
,
J. W.
,
1988
,
Cage Stability Analysis For Ssme Hpotp Bearings
, Vol.
1
,
NASA, Marshall Space Flight Center, Advanced Earth-to-Orbit Propulsion Technology
,
USA
, pp.
200
212
.
105.
Dunn
,
B. D.
,
2016
,
Materials and Processes for Spacecraft and High Reliability Applications
,
Springer Praxis Books
,
Switzerland
.
106.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p.
041502
.
You do not currently have access to this content.