Abstract

Cylindrical roller bearings (CRBs) are key components of mechanical transmission systems. The internal load distribution and stiffness (LDAS) have significant effects on the bearing fatigue life and vibrations. It can also affect the precision, reliability, and service life of mechanical transmission systems. Due to the external loads applied on the bearing, the flexible deformations of rings and rollers would be produced, which will change the LDAS. To study the LDAS of CRB, an improved quasi-static model of CRB is established. The flexible deformations and waviness of rings and rollers are considered. An analytical calculation method based on the Newton–Raphson method is conducted to obtain the LDAS. The results show that the radial force, speed, and waviness can greatly affect the LDAS; the flexible deformations of rings and rollers increase with the increments of radial force and speed; the internal load distribution is also greatly affected by the waviness, which leads to the uneven load distribution; the radial stiffness decreases with the increment of waviness amplitude; and the waviness order has a slight effect on the radial stiffness.

References

1.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2021
, “
Stiffness Characteristics of Crossed Roller Bearings With Roller Roundness Deformation
,”
ASME J. Tribol.
,
144
(
2
), p.
021201
.
2.
Liu
,
J.
,
Xu
,
Y.
, and
Pan
,
G.
,
2021
, “
A Combined Acoustic and Dynamic Model of a Defective Ball Bearing
,”
J. Sound Vib.
,
501
(
1
), p.
116029
.
3.
Liu
,
J.
,
Tang
,
C.
, and
Pan
,
G.
,
2021
, “
Dynamic Modeling and Simulation of a Flexible-Rotor Ball Bearing System
,”
J. Vib. Control
, p.
107754632110343
.
4.
Jones
,
A. B.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
.
5.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
6.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part II: System Studies
,”
J. Sound Vib.
,
139
(
2
), pp.
201
225
.
7.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries Inc.
,
Philadelphia, PA
.
8.
Houpert
,
L.
,
2002
, “
Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experimental Results
,”
Tribol. Trans.
,
45
(
3
), pp.
345
353
.
9.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Stiffness Matrix Calculation of Rolling Element Bearings Using a Finite Element Contact Mechanics Model
,”
Mech. Mach. Theory
,
51
(
1
), pp.
32
45
.
10.
Noel
,
D.
,
Ritou
,
M.
,
Furet
,
B.
, and
Le Loch
,
S.
,
2013
, “
Complete Analytical Expression of the Stiffness Matrix of Angular Contact Ball Bearings
,”
ASME J. Tribol.
,
135
(
4
), p.
041101
.
11.
Sheng
,
X.
,
Li
,
B.
,
Wu
,
Z.
, and
Li
,
H.
,
2014
, “
Calculation of Ball Bearing Speed-Varying Stiffness
,”
Mech. Mach. Theory
,
81
(
1
), pp.
166
180
.
12.
Buczkowski
,
R.
,
Kleiber
,
M.
, and
Starzynski
,
G.
,
2014
, “
Normal Contact Stiffness of Fractal Rough Surfaces
,”
Arch. Mech.
,
66
(
6
), pp.
411
428
.
13.
Zou
,
H. T.
, and
Wang
,
B. L.
,
2015
, “
Investigation of the Contact Stiffness Variation of Linear Rolling Guides Due to the Effects of Friction and Wear During Operation
,”
Tribol. Int.
,
92
(
1
), pp.
472
484
.
14.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2017
, “
Study on the Stiffness and Fatigue Life of Tapered Roller Bearings With Roller Diameter Error
,”
J. Eng. Tribol.
,
231
(
2
), pp.
176
188
.
15.
Zhang
,
J.
,
Fang
,
B.
,
Zhu
,
Y.
, and
Hong
,
J.
,
2017
, “
A Comparative Study and Stiffness Analysis of Angular Contact Ball Bearings Under Different Preload Mechanisms
,”
Mech. Mach. Theory
,
115
(
1
), pp.
1
17
.
16.
Zhang
,
J.
,
Fang
,
B.
,
Hong
,
J.
,
Wan
,
S.
, and
Zhu
,
Y.
,
2017
, “
A General Model for Preload Calculation and Stiffness Analysis for Combined Angular Contact Ball Bearings
,”
J. Sound Vib.
,
411
(
1
), pp.
435
449
.
17.
Zhang
,
Y.
,
Fang
,
B.
,
Kong
,
L.
, and
Li
,
Y.
,
2020
, “
Effect of the Ring Misalignment on the Service Characteristics of Ball Bearing and Rotor System
,”
Mech. Mach. Theory
,
151
(
1
), p.
103889
.
18.
Hao
,
X.
,
Gu
,
X.
,
Zhou
,
X.
,
Liao
,
X.
, and
Han
,
Q.
,
2019
, “
Distribution Characteristics of Stress and Displacement of Rings of Cylindrical Roller Bearing
,”
J. Mech. Eng. Sci.
,
233
(
12
), pp.
4348
4358
.
19.
Liu
,
J.
,
Tang
,
C.
,
Wu
,
H.
,
Xu
,
Z.
, and
Wang
,
L.
,
2019
, “
An Analytical Calculation Method of the Load Distribution and Stiffness of an Angular Contact Ball Bearing
,”
Mech. Mach. Theory
,
142
(
1
), p.
103597
.
20.
Li
,
S.
,
2018
, “
A Mathematical Model and Numeric Method for Contact Analysis of Rolling Bearings
,”
Mech. Mach. Theory
,
119
(
1
), pp.
61
73
.
21.
Shi
,
Z.
,
Liu
,
J.
,
Li
,
H.
,
Zhang
,
Q.
, and
Xiao
,
G.
,
2022
, “
Dynamic Simulation of a Planet Roller Bearing Considering the Cage Bridge Crack
,”
Eng. Fail. Anal.
,
131
(
1
), p.
105849
.
22.
Cavallaro
,
G.
,
Nelias
,
D.
, and
Bon
,
F.
,
2005
, “
Analysis of High-Speed Intershaft Cylindrical Roller Bearing With Flexible Rings
,”
Tribol. Trans.
,
48
(
2
), pp.
154
164
.
23.
Leblanc
,
A.
,
Nelias
,
D.
, and
Defaye
,
C.
,
2009
, “
Nonlinear Dynamic Analysis of Cylindrical Roller Bearing With Flexible Rings
,”
J. Sound Vib.
,
325
(
1–2
), pp.
145
160
.
24.
Mao
,
Y.
,
Wang
,
L.
, and
Zhang
,
C.
,
2018
, “
Influence of Ring Deformation on the Dynamic Characteristics of a Roller Bearing in Clearance Fit With Housing
,”
Int. J. Mech. Sci.
,
138
(
1
), pp.
122
130
.
25.
Liu
,
J.
,
Tang
,
C.
, and
Shao
,
Y.
,
2019
, “
An Innovative Dynamic Model for Vibration Analysis of a Flexible Roller Bearing
,”
Mech. Mach. Theory
,
135
(
1
), pp.
27
39
.
26.
Liu
,
J.
,
Pang
,
R.
,
Xu
,
Y.
,
Ding
,
S.
, and
He
,
Q.
,
2020
, “
Vibration Analysis of a Single Row Angular Contact Ball Bearing With the Coupling Errors Including the Surface Roundness and Waviness
,”
Sci. Chin. Technol. Sci.
,
63
(
6
), pp.
943
952
.
27.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
293
302
.
28.
Harris
,
T. A.
, and
Aaronson
,
S. F.
,
1967
, “
An Analytical Investigation of Cylindrical Roller Bearings Having Annular Rollers
,”
ASLE Trans.
,
10
(
3
), pp.
235
242
.
29.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis-Essential Concepts of Bearing Technology
, 5th ed.,
Taylor and Francis
,
New York, NY
.
30.
Liu
,
J.
, and
Xu
,
Z.
,
2022
, “
A Simulation Investigation of Lubricating Characteristics for a Cylindrical Roller Bearing of a High-Power Gearbox
,”
Tribol. Int.
,
167
(
1
), p.
107373
.
31.
Liu
,
J.
,
Wang
,
L. F.
, and
Shi
,
Z. F.
,
2022
, “
Dynamic Modelling of the Defect Extension and Appearance in a Cylindrical Roller Bearing
,”
Mech. Syst. Signal Process
,
173
(
3
), p.
109040
.
You do not currently have access to this content.