Abstract

Magnesium nanocomposites with improved mechanical and tribological properties have attracted widespread interest in the automotive sector. Given the great potential of magnesium nanocomposites in the automotive sector and the need for recycling materials to minimize their negative impact on the environment, it is imperative to consider the possibility of a practical approach to recycling these materials. In this study, turning induced deformation (TID) technique is used to recycle the magnesium composites containing iron oxide (Fe3O4) nanoparticles. The chips collected from the turning process of composites were cold compacted and hot extruded into cylindrical rods. The extruded materials were investigated for their tribological response under dry sliding conditions. The wear tests were performed using a pin on disc tribometer against an EN31 alloy steel counter disc under applied loads of 10, 20, 30, and 50 N and sliding speeds of 1, 2, 3, and 5 m/s. The worn pin surfaces were examined under scanning electron microscopy integrated with an energy dispersive x-ray spectrometer to understand wear characteristics. The results revealed a better wear resistance and friction coefficient for recycled nanocomposites than pure magnesium. The enhanced wear resistance of recycled nanocomposites is attributed to the increased hardness and strength due to the Fe3O4 nanoparticles and the turning induced deformation process. The wear surfaces revealed abrasion and delamination as the predominant wear mechanism, with thermal softening occurring only at the highest applied load and sliding speed.

References

1.
Wegmann
,
S.
,
Rytka
,
C.
,
Diaz-Rodenas
,
M.
,
Werlen
,
V.
,
Schneeberger
,
C.
,
Ermanni
,
P.
,
Caglar
,
B.
,
Gomez
,
C.
, and
Michaud
,
V.
,
2022
, “
A Life Cycle Analysis of Novel Lightweight Composite Processes: Reducing the Environmental Footprint of Automotive Structures
,”
J. Clean. Prod.
,
330
, p.
129808
.
2.
Herzog
,
T.
,
2009
,
World Greenhouse Gas Emissions in 2005
, WRI Working Papers,
World Resources Institute
,
Washington, DC
,
7
, pp.
2005
2009
, [Online], http://www.wri.org/publication/world-greenhouse-gas-emissions-2005
3.
Khatkar
,
S. K.
,
Verma
,
R.
,
Kharb
,
S. S.
,
Thakur
,
A.
, and
Sharma
,
R.
,
2020
, “
Optimization and Effect of Reinforcements on the Sliding Wear Behavior of Self-Lubricating AZ91D-SiC-Gr Hybrid Composites
,”
Silicon
,
13
(
5
), pp.
1461
1473
.
4.
Fontaras
,
G.
,
Zacharof
,
N. G.
, and
Ciuffo
,
B.
,
2017
, “
Fuel Consumption and CO2 Emissions From Passenger Cars in Europe—Laboratory Versus Real-World Emissions
,”
Prog. Energy Combust. Sci.
,
60
, pp.
97
131
.
5.
Nguyen
,
Q. B.
,
Sim
,
Y. H. M.
,
Gupta
,
M.
, and
Lim
,
C. Y. H.
,
2015
, “
Tribology Characteristics of Magnesium Alloy AZ31B and Its Composites
,”
Tribol. Int.
,
82
, pp.
464
471
.
6.
Behnamian
,
Y.
,
Serate
,
D.
,
Aghaie
,
E.
,
Zahiri
,
R.
,
Tolentino
,
Z.
,
Niazi
,
H.
, and
Mostafaei
,
A.
,
2022
, “
Tribological Behavior of ZK60 Magnesium Matrix Composite Reinforced by Hybrid MWCNTs/B4C Prepared by Stir Casting Method
,”
Tribol. Int.
,
165
, p.
107299
.
7.
Nie
,
K. B.
,
Wang
,
X. J.
,
Deng
,
K. K.
,
Hu
,
X. S.
, and
Wu
,
K.
,
2021
, “
Magnesium Matrix Composite Reinforced by Nanoparticles—A Review
,”
J. Magnes. Alloy.
,
9
(
1
), pp.
57
77
.
8.
Pasha
,
M. B.
,
Rao
,
R. N.
,
Ismail
,
S.
,
Özcan
,
M.
,
Prasad
,
P. S.
, and
Gupta
,
M.
,
2022
, “
Assessing Mg/Si3N4 Biodegradable Nanocomposites for Osteosynthesis Implants With a Focus on Microstructural, Mechanical, In Vitro Corrosion and Bioactivity Aspects
,”
J. Mater. Res. Technol.
,
19
, pp.
3803
3817
.
9.
Pasha
,
M. B.
,
Rao
,
R. N.
,
Ismail
,
S.
, and
Gupta
,
M.
,
2022
, “
Microstructure, Mechanical and Ignition Characteristics of Si3N4 Reinforced Magnesium Matrix Nanocomposites
,”
Appl. Sci.
,
12
(
12
), p.
6138
.
10.
Banerjee
,
S.
,
Sahoo
,
P.
, and
Davim
,
J. P.
,
2021
, “
Tribological Characterisation of Magnesium Matrix Nanocomposites: A Review
,”
Adv. Mech. Eng.
,
13
(
4
), pp.
1
39
.
11.
Shen
,
M.
,
Zhu
,
X.
,
Han
,
B.
,
Ying
,
T.
, and
Jia
,
J.
,
2022
, “
Dry Sliding Wear Behaviour of AZ31 Magnesium Alloy Strengthened by Nanoscale SiCp
,”
J. Mater. Res. Technol.
,
16
, pp.
814
823
.
12.
Kartheesan
,
S.
,
Khan
,
B. S. H.
,
Kamaraj
,
M.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Dry Sliding Wear Behavior of Magnesium Nanocomposites Using Response Surface Methodology
,”
ASME J. Tribol.
,
144
(
1
), p.
011704
.
13.
Kaviti
,
R. V. P.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2018
, “
Investigation on Dry Sliding Wear Behavior of Mg/BN Nanocomposites
,”
J. Magnes. Alloy.
,
6
(
3
), pp.
263
276
.
14.
Manakari
,
V.
,
Parande
,
G.
,
Doddamani
,
M.
, and
Gupta
,
M.
,
2019
, “
Evaluation of Wear Resistance of Magnesium/Glass Microballoon Syntactic Foams for Engineering/Biomedical Applications
,”
Ceram. Int.
,
45
(
7
), pp.
9302
9305
.
15.
Abbas
,
A.
, and
Huang
,
S. J.
,
2020
, “
Tribology International Tribological Effects of Carbon Nanotubes on Magnesium Alloy AZ31 and Analyzing Aging Effects on CNTs/AZ31 Composites Fabricated by Stir Casting Process
,”
Tribol. Int.
,
142
, p.
105982
.
16.
Turan
,
M. E.
,
Zengin
,
H.
, and
Sun
,
Y.
,
2020
, “
Dry Sliding Wear Behavior of (MWCNT + GNPs) Reinforced AZ91 Magnesium Matrix Hybrid Composites
,”
Met. Mater. Int.
,
26
(
4
), pp.
541
550
.
17.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Dry Sliding Tribological Behavior of AZ31-WC Nano-Composites
,”
J. Magnes. Alloy.
,
7
(
2
), pp.
315
327
.
18.
Seenuvasaperumal
,
P.
,
Elayaperumal
,
A.
, and
Jayavel
,
R.
,
2017
, “
Influence of Calcium Hexaboride Reinforced Magnesium Composite for the Mechanical and Tribological Behaviour
,”
Tribol. Int.
,
111
, pp.
18
25
.
19.
Moheimani
,
S. K.
,
Keshtgar
,
A.
,
Khademzadeh
,
S.
,
Tayebi
,
M.
,
Rajaee
,
A.
, and
Saboori
,
A.
,
2021
, “
Tribological Behaviour of AZ31 Magnesium Alloy Reinforced by Bimodal Size B4C After Precipitation Hardening
,”
J. Magnes. Alloy
.
20.
Mendis
,
C. L.
, and
Singh
,
A.
,
2013
, “
Magnesium Recycling: To the Grave and Beyond
,”
JOM
,
65
(
10
), pp.
1283
1284
.
21.
Shamsudin
,
S.
,
Lajis
,
M. A.
, and
Zhong
,
Z. W.
,
2016
, “
Solid-State Recycling of Light Metals: A Review
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
23
.
22.
Chino
,
Y.
,
Hoshika
,
T.
, and
Mabuchi
,
M.
,
2006
, “
Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repeatedly Recycled by Hot Extrusion
,”
Mater. Trans.
,
47
(
4
), pp.
1040
1046
.
23.
yan WU
,
S.
,
sheng JI
,
Z.
,
fan RONG
,
S.
, and
liang HU
,
M.
,
2010
, “
Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Prepared by Solid-State Recycling Process From Chips
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
20
(
5
), pp.
783
788
.
24.
Tekumalla
,
S.
,
Ajjarapu
,
M.
, and
Gupta
,
M.
,
2019
, “
A Novel Turning-Induced-Deformation Based
,”
Metals (Basel)
,
9
(
841
), pp.
1
9
.
25.
Ying
,
L.
,
Yuan-yuan
,
L.
, and
Da-tong
,
Z.
,
2002
, “
Microstructure and Properties of AZ80 Magnesium Alloy Prepared by Hot Extrusion From Recycled Machined Chips
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
12
(
5
), pp.
882
885
.
26.
Hu
,
M. L.
,
Ji
,
Z. S.
,
Chen
,
X. Y.
,
Wang
,
Q. D.
, and
Ding
,
W. J.
,
2012
, “
Solid-State Recycling of AZ91D Magnesium Alloy Chips
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
22
(
S1
), pp.
s68
s73
.
27.
Tekumalla
,
S.
,
Gupta
,
N.
, and
Gupta
,
M.
,
2020
, “
Influence of Turning Speed on the Microstructure and Properties of Magnesium ZK60 Alloy Pre-Processed Via Turning-Induced-Deformation
,”
J. Alloys Compd.
,
831
, p.
154840
.
28.
Johanes
,
M.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2019
, “
Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed Via Disintegrated Melt Deposition and Turning-Induced Deformation Techniques
,”
Metals
,
9
(
11
), p.
1225
.
29.
Ashrafi
,
N.
,
Hanim
,
M. A. A.
,
Sarraf
,
M.
,
Sulaiman
,
S.
, and
Hong
,
T. S.
,
2020
, “
Microstructural, Tribology and Corrosion Properties of Optimized Fe3O4-SiC Reinforced Aluminum Matrix Hybrid Nano Filler Composite Fabricated Through Powder Metallurgy Method
,”
Materials (Basel)
,
13
(
18
), pp.
1
18
.
30.
Sun
,
J.
,
Ge
,
C.
,
Wang
,
C.
, and
Li
,
S.
,
2022
, “
Tribological Behavior of Graphene Oxide-Fe3O4 Nanocomposites for Additives in Water-Based Lubricants
,”
Fuller. Nanotub. Carbon Nanostructures
,
30
(
8
), pp.
1
10
.
31.
Lineira del Rio
,
J. M.
,
López
,
E. R.
,
Gonzalez Gomez
,
M.
,
Yanez Vilar
,
S.
,
Piñeiro
,
Y.
,
Rivas
,
J.
,
Gonçalves
,
D. E.
,
Seabra
,
J. H.
, and
Fernández
,
J.
,
2020
, “
Tribological Behavior of Nanolubricants Based on Coated Magnetic Nanoparticles and Trimethylolpropane Trioleate Base Oil
,”
Nanomaterials
,
10
(
4), p.
683
.
32.
Zhang
,
Q.
,
Wu
,
B.
,
Song
,
R.
,
Song
,
H.
,
Zhang
,
J.
, and
Hu
,
X.
,
2020
, “
Preparation, Characterization and Tribological Properties of Polyalphaolefin With Magnetic Reduced Graphene Oxide/Fe3O4
,”
Tribol. Int.
,
141
, p.
105952
.
33.
Zhou
,
G.
,
Zhu
,
Y.
,
Wang
,
X.
,
Xia
,
M.
,
Zhang
,
Y.
, and
Ding
,
H.
,
2013
, “
Sliding Tribological Properties of 0.45% Carbon Steel Lubricated With Fe3O4 Magnetic Nano-Particle Additives in Baseoil
,”
Wear
,
301
(
1–2
), pp.
753
757
.
34.
Rahman
,
O. U.
, and
Ahmad
,
S.
,
2014
, “
Physico-Mechanical and Electrochemical Corrosion Behavior of Soy Alkyd/Fe3O4 Nanocomposite Coatings
,”
RSC Adv.
,
4
(
29
), pp.
14936
14947
.
35.
Wang
,
Q.
,
Yang
,
F.
,
Yang
,
Q.
,
Chen
,
J.
, and
Guan
,
H.
,
2010
, “
Study on Mechanical Properties of Nano-Fe3O4 Reinforced Nitrile Butadiene Rubber
,”
Mater. Des.
,
31
(
2
), pp.
1023
1028
.
36.
Ashrafi
,
N.
,
Ariff
,
A. H. M.
,
Sarraf
,
M.
,
Sulaiman
,
S.
, and
Hong
,
T. S.
,
2021
, “
Microstructural, Thermal, Electrical, and Magnetic Properties of Optimized Fe3O4–SiC Hybrid Nano Filler Reinforced Aluminium Matrix Composite
,”
Mater. Chem. Phys.
,
258
, p.
123895
.
37.
Eftekhari
,
M.
,
Movahedi
,
M.
, and
Kokabi
,
A. H.
,
2017
, “
Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing
,”
J. Mater. Eng. Perform.
,
26
(
7
), pp.
3516
3530
.
38.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
39.
Sahoo
,
B. N.
, and
Panigrahi
,
S. K.
,
2019
, “
Development of Wear Maps of In-Situ TiC + TiB2 Reinforced AZ91 Mg Matrix Composite With Varying Microstructural Conditions
,”
Tribol. Int.
,
135
, pp.
463
477
.
40.
Selvam
,
B.
,
Marimuthu
,
P.
,
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
,
Tun
,
K. S.
,
Gupta
,
M.
, and
Kamaraj
,
M.
,
2014
, “
Dry Sliding Wear Behaviour of Zinc Oxide Reinforced Magnesium Matrix Nano-Composites
,”
Mater. Des.
,
58
, pp.
475
481
.
41.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1964
,
The Friction and Lubrication of Solids
, Vol.
19
,
Oxford Clarendon Press
,
Haverford, PA
, pp.
428
429
.
42.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2005
,
Engineering Tribology
, 3rd ed.,
Elsevier Butterworth-Heinemann
,
Amsterdam, Boston
.
43.
Lim
,
C. Y. H.
,
Lim
,
S. C.
, and
Gupta
,
M.
,
2003
, “
Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
629
637
.
44.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear-Mechanism Maps
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.
45.
Lim
,
C. Y. H.
,
Leo
,
D. K.
,
Ang
,
J. J. S.
, and
Gupta
,
M.
,
2005
, “
Wear of Magnesium Composites Reinforced With Nano-Sized Alumina Particulates
,”
Wear
,
259
(
1–6
), pp.
620
625
.
You do not currently have access to this content.