Abstract

Wheel slips often produce wheel/rail damage, threatening the operation safety, and increasing the maintenance cost of contact-type railways. To understand the characteristics of wheel slips for further development of more accurate slip protection methods, this study employs a validated explicit finite element (FE) method to evaluate the transient wheel-rail rolling/slipping contact behaviors. The contact during the traction of the wheel from both standstill status and moving status is focused. Friction and traction coefficients are the two most crucial factors affecting the wheel slips. Conditions of partial and full slips within the contact patch are determined by setting different combinations of the traction and friction coefficients. The contact behaviors including stick-slip, partial slip, full slip, surface stress, and wear are studied. It is revealed that wheel slips may occur not only in the case where the traction coefficient exceeds the limiting value, but also when being slightly smaller. As a consequence, wheel slips can produce much larger wear-rate. This study provides an insight into the wheel slipping/spinning mechanism and theoretical guidance for the development of more accurate control methods of wheel slips.

References

1.
Olofsson
,
U.
,
Zhu
,
Y.
,
Abbasi
,
S.
,
Lewis
,
R.
, and
Lewis
,
S.
,
2013
, “
Tribology of the Wheel–Rail Contact—Aspects of Wear, Particle Emission and Adhesion
,”
Veh. Syst. Dyn.
,
51
(
7
), pp.
1091
1120
.
2.
Köck
,
F.
, and
Weinhardt
,
M.
,
1987
, “
Tractive Effort and Wheel Slip Control of Locomotive Type 120
,”
IFAC Proc. Vol.
,
20
(
5
), pp.
259
270
.
3.
Chen
,
H.
,
Furuya
,
T.
,
Fukagai
,
S.
,
Saga
,
S.
,
Ikoma
,
J.
,
Kimura
,
K.
, and
Suzumura
,
J.
,
2020
, “
Wheel Slip/Slide and Low Adhesion Caused by Fallen Leaves
,”
Wear
,
446–447
, p.
203187
.
4.
Hussain
,
I.
,
Mei
,
T. X.
, and
Ritchings
,
R. T.
,
2013
, “
Estimation of Wheel–Rail Contact Conditions and Adhesion Using the Multiple Model Approach
,”
Veh. Syst. Dyn.
,
51
(
1
), pp.
32
53
.
5.
Srivastava
,
J. P.
,
Sarkar
,
P. K.
,
Kiran
,
M. R.
, and
Ranjan
,
V.
,
2019
, “
A Numerical Study on Effects of Friction-Induced Thermal Load for Rail Under Varied Wheel Slip Conditions
,”
Simulation
,
95
(
4
), pp.
351
362
.
6.
RailCorp
,
N. T.
,
2012
,
TMC 226: Rail Defects Handbook. Version 1.2
,
New South Wales (NSW) Department of Transport
,
Sydney, Australia
.
7.
Jin
,
X. S.
,
Zhang
,
W. H.
,
Zeng
,
J.
,
Zhou
,
Z. R.
,
Liu
,
Q. Y.
, and
Wen
,
Z. F.
,
2004
, “
Adhesion Experiment on a Wheel/Rail System and Its Numerical Analysis
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
218
(
4
), pp.
293
304
.
8.
Tanabe
,
N.
,
Hirota
,
Y.
,
Omichi
,
T.
,
Hirama
,
J.
, and
Nagase
,
K.
,
2004
, “
Study on the Factors Which Cause the Wheel Skidding of JR Ltd. Express EMUs
,”
JSME Int. J. Ser. C
,
47
(
2
), pp.
488
495
.
9.
Olofsson
,
U.
,
2009
, “Adhesion and Friction Modification,”
Wheel–Rail Interface Handbook
,
R.
Lewis
, and
U.
Olofsson
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
510
527
.
10.
Wang
,
S.
,
Xiao
,
J.
,
Huang
,
J.
, and
Sheng
,
H.
,
2016
, “
Locomotive Wheel Slip Detection Based on Multi-Rate State Identification of Motor Load Torque
,”
J. Frankl. Inst.
,
353
(
2
), pp.
521
540
.
11.
Pichlík
,
P.
, and
Zdeněk
,
J.
,
2014
, “
Overview of Slip Control Methods Used in Locomotives
,”
Trans. Electr. Eng.
,
3
(
2
), pp.
38
43
.
12.
Xu
,
X.
,
Mao
,
X.
,
Sun
,
S.
,
Niu
,
L.
,
Liu
,
J.
, and
Xiao
,
B.
,
2021
, “
Dynamic Diagnosis Method for Continuous and Equidistant Wheel Burn Based on Axle Box Acceleration
,”
2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)
,
Nanjing, China
,
Oct. 15–17
, pp.
1
5
.
13.
Liang
,
H.
,
Liu
,
P.
,
Wang
,
T.
,
Wang
,
H.
,
Zhang
,
K.
,
Cao
,
Y.
, and
An
,
D.
,
2021
, “
Influence of Wheel Polygonal Wear on Wheel-Rail Dynamic Contact in a Heavy-Haul Locomotive Under Traction Conditions
,”
Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit
,
235
(
4
), pp.
405
415
.
14.
Carter
,
F. W.
,
1926
, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
,
112
(
760
), pp.
151
157
.
15.
Vermeulen
,
P. J.
, and
Johnson
,
K. L.
,
1964
, “
Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
338
340
.
16.
Kalker
,
J. J.
,
2013
,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer Academic Publisher
,
Dordrecht
, pp.
137
232
.
17.
Zhao
,
X.
, and
Li
,
Z.
,
2011
, “
The Solution of Frictional Wheel–Rail Rolling Contact with a 3D Transient Finite Element Model: Validation and Error Analysis
,”
Wear
,
271
(
1–2
), pp.
444
452
.
18.
Deng
,
X.
,
Qian
,
Z.
, and
Dollevoet
,
R.
,
2015
, “
Lagrangian Explicit Finite Element Modeling for Spin-Rolling Contact
,”
ASME J. Tribol.
,
137
(
4
), p.
041401
.
19.
Wei
,
Z.
,
Li
,
Z.
,
Qian
,
Z.
,
Chen
,
R.
, and
Dollevoet
,
R.
,
2016
, “
3D FE Modelling and Validation of Frictional Contact With Partial Slip in Compression–Shift–Rolling Evolution
,”
Int. J. Rail Transp.
,
4
(
1
), pp.
20
36
.
20.
Zhao
,
X.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2013
, “
The Vertical and the Longitudinal Dynamic Responses of the Vehicle–Track System to Squat-Type Short Wavelength Irregularity
,”
Veh. Syst. Dyn.
,
51
(
12
), pp.
1918
1937
.
21.
Li
,
S.
,
Li
,
Z.
,
Núñez
,
A.
, and
Dollevoet
,
R.
,
2017
, “
New Insights Into the Short Pitch Corrugation Enigma Based on 3D-FE Coupled Dynamic Vehicle-Track Modeling of Frictional Rolling Contact
,”
Appl. Sci.
,
7
(
8
), p.
807
.
22.
Deng
,
X.
,
Li
,
Z.
,
Qian
,
Z.
,
Zhai
,
W.
,
Xiao
,
Q.
, and
Dollevoet
,
R.
,
2019
, “
Pre-Cracking Development of Weld-Induced Squats Due to Plastic Deformation: Five-Year Field Monitoring and Numerical Analysis
,”
Int. J. Fatigue
,
127
, pp.
431
444
.
23.
Yang
,
Z.
,
Deng
,
X.
, and
Li
,
Z.
,
2019
, “
Numerical Modeling of Dynamic Frictional Rolling Contact with an Explicit Finite Element Method
,”
Tribol. Int.
,
129
, pp.
214
231
.
24.
Shen
,
C.
,
Deng
,
X.
,
Wei
,
Z.
,
Dollevoet
,
R.
,
Zoeteman
,
A.
, and
Li
,
Z.
,
2021
, “
Comparisons Between Beam and Continuum Models for Modelling Wheel-Rail Impact at a Singular Rail Surface Defect
,”
Int. J. Mech. Sci.
,
198
, p.
106400
.
25.
Arias-Cuevas
,
O.
,
2010
,
Low Adhesion in the Wheel-Rail Contact
,
TUD
,
Delft
, pp.
3
4
.
26.
Malvezzi
,
M.
,
Pugi
,
L.
,
Papini
,
S.
,
Rindi
,
A.
, and
Toni
,
P.
,
2013
, “
Identification of a Wheel–Rail Adhesion Coefficient From Experimental Data During Braking Tests
,”
Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit
,
227
(
2
), pp.
128
139
.
27.
Zhao
,
X.
,
Zhang
,
P.
, and
Wen
,
Z.
,
2019
, “
On the Coupling of the Vertical, Lateral and Longitudinal Wheel-Rail Interactions at High Frequencies and the Resulting Irregular Wear
,”
Wear
,
430–431
, pp.
317
326
.
28.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.
29.
Hallquist
,
J. O.
,
Goudreau
,
G. L.
, and
Benson
,
D. J.
,
1985
, “
Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computations
,”
Comput. Meth. Appl. Mech. Eng.
,
51
(
1–3
), pp.
107
137
.
30.
Tunna
,
J.
,
Sinclair
,
J.
, and
Perez
,
J.
,
2007
, “
A Review of Wheel Wear and Rolling Contact Fatigue
,”
Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit
,
221
(
2
), pp.
271
289
.
31.
Zhao
,
X.
,
Wen
,
Z.
,
Zhu
,
M.
, and
Jin
,
X.
,
2014
, “
A Study on High-Speed Rolling Contact Between a Wheel and a Contaminated Rail
,”
Veh. Syst. Dyn.
,
52
(
10
), pp.
1270
1287
.
You do not currently have access to this content.