Abstract

This study reports the tribological characteristics of trimethylolpropane trioleate (TMPTO) additivated with antifriction and antiwear additives, which are ionic liquid (IL), glycerol monooleate (GMO), and molybdenum dithiocarbamate (MoDTC). In addition, to obtain the ideal composition that results in the minimal coefficient of friction (COF), optimization tool was employed using response surface methodology (RSM) technique with the Box–Behnken design. The IL used in this study was a phosphorus-type IL, namely trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl) phosphinate, [P14,6,6,6][TMPP]. The resulting COF and worn surface morphology were investigated using high-frequency reciprocating rig (HFRR) tribotester and scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX), respectively. From the experimental results, a second-order polynomial mathematical model was constructed and able to statistically predict the resulting COF. The optimized values that resulted in the lowest average COF of 0.0458 were as follows: 0.93 wt% IL, 1.49 wt% GMO, and 0.52 wt% MoDTC. The addition of IL into neat base oil managed to reduce the COF, while the combination of IL, GMO, and MoDTC at optimum concentration further reduced the average COF and wear as observed through SEM micrographs when compared with those of additive-free TMPTO, suggesting that GMO and MoDTC were compatible to be used with IL.

References

1.
Salimon
,
J.
,
Salih
,
N.
, and
Yousif
,
E.
,
2010
, “
Biolubricants: Raw Materials, Chemical Modifications and Environmental Benefits
,”
Eur. J. Lipid Sci. Technol.
,
112
(
5
), pp.
519
530
. 10.1002/ejlt.200900205
2.
Soni
,
S.
, and
Agarwal
,
M.
,
2014
, “
Lubricants From Renewable Energy Sources—A Review
,”
Green Chem. Lett. Rev.
,
7
(
4
), pp.
359
382
. 10.1080/17518253.2014.959565
3.
Schmidt
,
T. A.
,
Gastelum
,
N. S.
,
Nguyen
,
Q. T.
,
Schumacher
,
B. L.
, and
Sah
,
R. L.
,
2007
, “
Boundary Lubrication of Articular Cartilage: Role of Synovial Fluid Constituents
,”
Arthritis Rheumatol.
,
56
(
3
), pp.
882
891
. 10.1002/art.22446
4.
Syahir
,
A. Z.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Alabdulkarem
,
A.
,
Gulzar
,
M.
,
Khuong
,
L. S.
, and
Harith
,
M. H.
,
2017
, “
A Review on Bio-Based Lubricants and Their Applications
,”
J. Cleaner Prod.
,
168
, pp.
997
1016
. 10.1016/j.jclepro.2017.09.106
5.
Lei
,
Z.
,
Chen
,
B.
,
Koo
,
Y.-M.
, and
MacFarlane
,
D. R.
,
2017
, “
Introduction: Ionic Liquids
,”
Chem. Rev.
,
117
(
10
), pp.
6633
6635
. 10.1021/acs.chemrev.7b00246
6.
Amiril
,
S. A. S.
,
Rahim
,
E. A.
, and
Syahrullail
,
S.
,
2017
, “
A Review on Ionic Liquids as Sustainable Lubricants in Manufacturing and Engineering: Recent Research, Performance, and Applications
,”
J. Cleaner Prod.
,
168
, pp.
1571
1589
. 10.1016/j.jclepro.2017.03.197
7.
Qu
,
J.
,
Bansal
,
D. G.
,
Yu
,
B.
,
Howe
,
J. Y.
,
Luo
,
H.
,
Dai
,
S.
,
Li
,
H.
,
Blau
,
P. J.
,
Bunting
,
B. G.
,
Mordukhovich
,
G.
, and
Smolenski
,
D. J.
,
2012
, “
Antiwear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive
,”
ACS Appl. Mater. Interfaces
,
4
(
2
), pp.
997
1002
. 10.1021/am201646k
8.
Yu
,
B.
,
Bansal
,
D. G.
,
Qu
,
J.
,
Sun
,
X.
,
Luo
,
H.
,
Dai
,
S.
,
Blau
,
P. J.
,
Bunting
,
B. G.
,
Mordukhovich
,
G.
, and
Smolenski
,
D. J.
,
2012
, “
Oil-Miscible and Non-Corrosive Phosphonium-Based Ionic Liquids as Candidate Lubricant Additives
,”
Wear
,
289
, pp.
58
64
. 10.1016/j.wear.2012.04.015
9.
Zhou
,
Y.
,
Dyck
,
J.
,
Graham
,
T. W.
,
Luo
,
H.
,
Leonard
,
D. N.
, and
Qu
,
J.
,
2014
, “
Ionic Liquids Composed of Phosphonium Cations and Organophosphate, Carboxylate, and Sulfonate Anions as Lubricant Antiwear Additives
,”
Langmuir
,
30
(
44
), pp.
13301
13311
. 10.1021/la5032366
10.
Barnhill
,
W. C.
,
Luo
,
H.
,
Meyer
,
H. M.
,
Ma
,
C.
,
Chi
,
M.
,
Papke
,
B. L.
, and
Qu
,
J.
,
2016
, “
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
,”
Tribol. Lett.
,
63
(
2
), p.
22
. 10.1007/s11249-016-0707-6
11.
Barnhill
,
W. C.
,
Qu
,
J.
,
Luo
,
H.
,
Meyer
,
H. M.
,
Ma
,
C.
,
Chi
,
M.
, and
Papke
,
B. L.
,
2014
, “
Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics
,”
ACS Appl. Mater. Interfaces
,
6
(
24
), pp.
22585
22593
. 10.1021/am506702u
12.
Zhou
,
Y.
, and
Qu
,
J.
,
2017
, “
Ionic Liquids as Lubricant Additives: A Review
,”
ACS Appl. Mater. Interfaces
,
9
(
4
), pp.
3209
3222
. 10.1021/acsami.6b12489
13.
Qu
,
J.
,
Barnhill
,
W. C.
,
Luo
,
H.
,
Meyer
,
H. M.
,
Leonard
,
D. N.
,
Landauer
,
A. K.
,
Kheireddin
,
B.
,
Gao
,
H.
,
Papke
,
B. L.
, and
Dai
,
S.
,
2015
, “
Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives
,”
Adv. Mater.
,
27
(
32
), pp.
4767
4774
. 10.1002/adma.201502037
14.
Barnhill
,
W. C.
,
Gao
,
H.
,
Kheireddin
,
B.
,
Papke
,
B. L.
,
Luo
,
H.
,
West
,
B. H.
, and
Qu
,
J.
,
2015
, “
Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-Wear Additives
,”
Front. Mech. Eng.
,
1
(
12
), pp.
1
8
.
15.
Khemchandani
,
B.
,
Somers
,
A.
,
Howlett
,
P.
,
Jaiswal
,
A. K.
,
Sayanna
,
E.
, and
Forsyth
,
M.
,
2014
, “
A Biocompatible Ionic Liquid as an Antiwear Additive for Biodegradable Lubricants
,”
Tribol. Int.
,
77
, pp.
171
177
. 10.1016/j.triboint.2014.04.016
16.
Abdullah
,
M. I. H. C.
,
Abdollah
,
M. F. B.
,
Amiruddin
,
H.
,
Tamaldin
,
N.
, and
Nuri
,
N. R. M.
,
2013
, “
Optimization of Tribological Performance of hBN/AL2O3Nanoparticles as Engine Oil Additives
,”
Procedia Eng.
,
68
, pp.
313
319
. 10.1016/j.proeng.2013.12.185
17.
Admile
,
B.
,
Kulkarni
,
G.
, and
Sonawane
,
S.
,
2014
, “
Application of Taguchi Method for Optimization of Process Parameters for Wear Loss of LM25/Flyash Composite
,”
Int. J. Innov. Eng. Technol.
,
4
(
4
), pp.
24
29
.
18.
Basavarajappa
,
S.
,
Chandramohan
,
G.
, and
Davim
,
J. P.
,
2007
, “
Application of Taguchi Techniques to Study Dry Sliding Wear Behaviour of Metal Matrix Composites
,”
Mater. Des.
,
28
(
4
), pp.
1393
1398
. 10.1016/j.matdes.2006.01.006
19.
Çiçek
,
A.
,
Kıvak
,
T.
, and
Samtaş
,
G.
,
2012
, “
Application of Taguchi Method for Surface Roughness and Roundness Error in Drilling of AISI 316 Stainless Steel
,”
Strojniški vestnik-J. Mech. Eng.
,
58
(
3
), pp.
165
174
. 10.5545/sv-jme.2011.167
20.
Mahapatra
,
S.
, and
Patnaik
,
A.
,
2009
, “
Study on Mechanical and Erosion Wear Behavior of Hybrid Composites Using Taguchi Experimental Design
,”
Mater. Des.
,
30
(
8
), pp.
2791
2801
. 10.1016/j.matdes.2009.01.037
21.
Mishra
,
A.
, and
Gangele
,
A.
,
2012
, “
Application of Taguchi Method in Optimization of Tool Flank Wear Width in Turning Operation of AISI 1045 Steel
,”
Ind. Eng. Lett.
,
2
(
8
), pp.
11
18
.
22.
Jiang
,
J.
, and
Stack
,
M. M.
,
2006
, “
Modelling Sliding Wear: From Dry to Wet Environments
,”
Wear
,
261
(
9
), pp.
954
965
. 10.1016/j.wear.2006.03.028
23.
Kahraman
,
F.
,
2009
, “
The Use of Response Surface Methodology for Prediction and Analysis of Surface Roughness of AISI 4140 Steel
,”
Mater. Tehnol.
,
43
(
5
), pp.
267
270
.
24.
Sahin
,
Y.
, and
Özdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
. 10.1016/j.matdes.2007.02.013
25.
Rajesh
,
S.
,
Rajakarunakaran
,
S.
, and
Pandian
,
R. S.
,
2012
, “
Modeling and Optimization of Sliding Specific Wear and Coefficient of Friction of Aluminum Based Red Mud Metal Matrix Composite Using Taguchi Method and Response Surface Methodology
,”
Mater. Phys. Mech.
,
15
(
2
), pp.
150
166
.
26.
Tan
,
Y. H.
,
Abdullah
,
M. O.
,
Nolasco-Hipolito
,
C.
, and
Ahmad Zauzi
,
N. S.
,
2017
, “
Application of RSM and Taguchi Methods for Optimizing the Transesterification of Waste Cooking Oil Catalyzed by Solid Ostrich and Chicken-Eggshell Derived CaO
,”
Renewable Energy
,
114
(
Part B
), pp.
437
447
. 10.1016/j.renene.2017.07.024
27.
Rajendiran
,
A.
,
Sumathi
,
A.
,
Krishnasamy
,
K.
,
Kabilan
,
S.
, and
Ganguli
,
D.
,
2016
, “
Antiwear Study on Petroleum Base Oils With Esters
,”
Tribol. Int.
,
99
, pp.
47
56
. 10.1016/j.triboint.2016.03.019
28.
Zulfattah
,
Z. M.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Harith
,
M. H.
,
Syahir
,
A. Z.
,
Norain
,
I.
,
Jumaidin
,
R.
,
Yusoff
,
M. N. A. M.
,
Alwi
,
A.
,
Jamshaid
,
M.
, and
Arslan
,
A.
,
2019
, “
Effect of Bio-Based Lubricant Towards Emissions and Engine Breakdown Due to Spark Plug Fouling in a Two-Stroke Engine
,”
J. Cleaner Prod.
,
221
, pp.
215
223
. 10.1016/j.jclepro.2019.02.224
29.
Grace
,
J.
,
Vysochanska
,
S.
,
Lodge
,
J.
, and
Iglesias
,
P.
,
2015
, “
Ionic Liquids as Additives of Coffee Bean Oil in Steel-Steel Contacts
,”
Lubricants
,
3
(
4
), pp.
637
649
. 10.3390/lubricants3040637
30.
Amiril
,
S. A. S.
,
Rahim
,
E. A.
,
Embong
,
Z.
, and
Syahrullail
,
S.
,
2018
, “
Tribological Investigations on the Application of Oil-Miscible Ionic Liquids Additives in Modified Jatropha-Based Metalworking Fluid
,”
Tribol. Int.
,
120
, pp.
520
534
. 10.1016/j.triboint.2018.01.030
31.
Fernandes
,
C. M. C. G.
,
Battez
,
A. H.
,
González
,
R.
,
Monge
,
R.
,
Viesca
,
J. L.
,
García
,
A.
,
Martins
,
R. C.
, and
Seabra
,
J. H. O.
,
2015
, “
Torque Loss and Wear of FZG Gears Lubricated With Wind Turbine Gear Oils Using an Ionic Liquid as Additive
,”
Tribol. Int.
,
90
, pp.
306
314
. 10.1016/j.triboint.2015.04.037
32.
Syahir
,
A. Z.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Harith
,
M. H.
,
Yusoff
,
M. N. A. M.
,
Zulfattah
,
Z. M.
, and
Jamshaid
,
M.
,
2019
, “
Tribological Improvement Using Ionic Liquids as Additives in Synthetic and Bio-Based Lubricants for Steel–Steel Contacts
,”
Tribol. Trans.
, pp.
1
16
. 10.1080/10402004.2019.1679934
33.
Zahid
,
R.
,
Haji Hassan
,
M.
,
Alabdulkarem
,
A.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Mufti
,
R. A.
,
Mohd Zulkifli
,
N. W.
,
Gulzar
,
M.
,
Bhutta
,
M. U.
,
Ali
,
M. A.
,
Abdullah
,
U.
, and
Yunus
,
R. H.
,
2018
, “
Tribological Characteristics Comparison of Formulated Palm Trimethylolpropane Ester and Polyalphaolefin for cam/Tappet Interface of Direct Acting Valve Train System
,”
Ind. Lubr. Tribol.
,
70
(
5
), pp.
888
901
. 10.1108/ILT-06-2017-0156
34.
Technical Comittee of Petroleum Additive Manufacturers in Europe (ATC)
,
2016
, “
Lubricant Additives: Use and Benefits
,”
ATC
,
Brussels, Belgium
, p.
34
.
35.
Eastwood
,
J.
,
2017
,
Influence of Polymeric Friction Modifiers in the Lubrication of DLC Contacts When Used Alone or in the Presence of MoDTC
,
Lube-Tech, Lube: The European Lubricants Industry Magazine
,
UK
, pp.
33
40
.
36.
Costa
,
H. L.
, and
Spikes
,
H.
,
2019
, “
Interactions of Ethanol With Friction Modifiers in Model Engine Lubricants
,”
Lubricants
,
7
(
11
), p.
101
. 10.3390/lubricants7110101
37.
Khaemba
,
D. N.
,
Neville
,
A.
, and
Morina
,
A.
,
2016
, “
New Insights on the Decomposition Mechanism of Molybdenum DialkyldiThioCarbamate (MoDTC): A Raman Spectroscopic Study
,”
RSC Adv.
,
6
(
45
), pp.
38637
38646
. 10.1039/C6RA00652C
38.
Jamshaid
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Arslan
,
A.
,
Alwi
,
A.
,
Khuong
,
L. S.
,
Alabdulkarem
,
A.
, and
Syahir
,
A. Z.
,
2019
, “
Production Optimization and Tribological Characteristics of Cottonseed Oil Methyl Ester
,”
J. Cleaner Prod.
,
209
, pp.
62
73
. 10.1016/j.jclepro.2018.10.126
39.
Makowski
,
S.
,
Weihnacht
,
V.
,
Schaller
,
F.
, and
Leson
,
A.
,
2014
, “
Ultra-Low Friction of Biodiesel Lubricated ta-C Coatings
,”
Tribol. Int.
,
71
, pp.
120
124
. 10.1016/j.triboint.2013.11.002
40.
Lince
,
J. R.
,
Pluntze
,
A. M.
,
Jackson
,
S. A.
,
Radhakrishnan
,
G.
, and
Adams
,
P. M.
,
2014
, “
Tribochemistry of MoS 3 Nanoparticle Coatings
,”
Tribol. Lett.
,
53
(
3
), pp.
543
554
. 10.1007/s11249-014-0293-4
41.
Johnson
,
D. W.
,
2016
,
The Tribology and Chemistry of Phosphorus Containing Lubricant Additives.
,
InTechOpen
,
UK
.
42.
Totolin
,
V.
,
Minami
,
I.
,
Gabler
,
C.
,
Brenner
,
J.
, and
Dörr
,
N.
,
2014
, “
Lubrication Mechanism of Phosphonium Phosphate Ionic Liquid Additive in Alkylborane–Imidazole Complexes
,”
Tribol. Lett.
,
53
(
2
), pp.
421
432
. 10.1007/s11249-013-0281-0
43.
Topolovec-Miklozic
,
K.
,
Lockwood
,
F.
, and
Spikes
,
H.
,
2008
, “
Behaviour of Boundary Lubricating Additives on DLC Coatings
,”
Wear
,
265
(
11–12
), pp.
1893
1901
. 10.1016/j.wear.2008.04.051
44.
Merz
,
R.
,
Brodyanski
,
A.
, and
Kopnarski
,
M.
,
2014
, “
On the Role of Oxidation in Tribological Contacts Under Environmental Conditions
,”
Conference Papers in Science
,
2015
, (
Article ID 515498
), pp.
1
11
. 10.1155/2015/515498
45.
Zulkifli
,
N.
,
Masjuki
,
H.
,
Kalam
,
M.
,
Yunus
,
R.
, and
Azman
,
S.
,
2014
, “
Lubricity of Bio-Based Lubricant Derived From Chemically Modified Jatropha Methyl Ester
,”
J. Tribol.
,
1
, pp.
18
39
.
46.
Zulkifli
,
N. W. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Shahabuddin
,
M.
, and
Yunus
,
R.
,
2013
, “
Wear Prevention Characteristics of a Palm Oil-Based TMP (Trimethylolpropane) Ester as an Engine Lubricant
,”
Energy
,
54
, pp.
167
173
. 10.1016/j.energy.2013.01.038
47.
Jiang
,
D.
,
Hu
,
L.
, and
Feng
,
D.
,
2013
, “
Tribological Properties of Crown-Type Phosphate Ionic Liquids as Lubricating Additives in Rapeseed Oils
,”
Lubr. Sci.
,
25
(
3
), pp.
195
207
. 10.1002/ls.1199
48.
Yu
,
B.
,
Zhou
,
F.
,
Pang
,
C.
,
Wang
,
B.
,
Liang
,
Y.
, and
Liu
,
W.
,
2008
, “
Tribological Evaluation of α, ω-Diimidazoliumalkylene Hexafluorophosphate Ionic Liquid and Benzotriazole as Additive
,”
Tribol. Int.
,
41
(
8
), pp.
797
801
. 10.1016/j.triboint.2008.02.004
49.
Bowden
,
F.
, and
Tabor
,
D.
,
2001
,
The Nature of Metallic Wear: The Friction and Lubrication of Solids
,
Oxford University Press
,
New York
.
50.
Mannekote
,
J. K.
, and
Kailas
,
S. V.
,
2012
, “
The Effect of Oxidation on the Tribological Performance of Few Vegetable Oils
,”
J. Mater. Res. Technol.
,
1
(
2
), pp.
91
95
. 10.1016/S2238-7854(12)70017-0
You do not currently have access to this content.