Abstract

Selective laser melting (SLM) technology has a great potential to reduce size and weight of hydraulic valves. However, the tribological performance of an SLMed valve has not been studied which is crucial for the performance and reliability of the valve, especially under contaminated conditions. In this study, the friction and lubrication behavior between an SLMed valve body and a traditional spool were studied using a scaled reciprocating test rig under various contaminated conditions (frequency at 5 Hz and 25 Hz; particle concentration at 0.4 mg/ml and 4 mg/ml; particle size at 1.6 µm and 15 µm). Three types of SLMed samples were fabricated using different exposure times: one has many large surface pores (pores area > 1000 µm2 accounts for 7.167% of the sample surface); one has a few small surface pores (pores area between 100 µm2 and 1000 µm2 accounts for 0.574% of the sample surface); and one only has micropores (pores area < 300 µm2 accounts for 0.168% of the sample surface). The density, hardness, microstructures, and pore characterization of the SLMed samples were investigated. The results indicated that the frequency greatly influenced friction and lubrication behaviors by determining lubrication regimes. The influence of surface pores on the lubrication and friction depends on contact conditions: pores which served as particle containers to reduce friction are prominent under 5 Hz frequency and high particle concentration; extra lubrication by the surface pores is observed under 25 Hz frequency and low particle concentration.

References

1.
Surjaatmadja
,
J. B.
, and
Fitch
,
E. C.
,
2014
, “
The Characteristics of Contaminant Lock in Fluid Components-Interactions and Non-Ideal Conditions
,”
The Basic Fluid Power Research Center Annual Report
, Vol.
1
, pp.
11.1
11.5
.
2.
Lehner
,
S.
, and
Jacobs
,
G.
,
1997
,
Tribology of Hydraulic Pump Testing
,
ASTM International
,
West Conshohocken, PA
.
3.
Singh
,
M.
,
Lathkar
,
G. S.
, and
Basu
,
S. K.
,
2012
, “
Failure Prevention of Hydraulic System Based on Oil Contamination
,”
J. Inst. Eng. (India): Ser. C
,
93
(
3
), pp.
269
274
. 10.1007/s40032-012-0032-2
4.
Nair
,
K.
,
1980
, “
Proposed Program on Hydraulic Servo Valve Contaminant Sensitivity
,”
Basic Fluid Power Res.
,
13
(
4
), pp.
397
399
.
5.
Frith
,
R. H.
, and
Scott
,
W.
,
1993
, “
Control of Solids Contamination in Hydraulic Systems—An Overview
,”
Wear
,
165
(
1
), pp.
69
74
. 10.1016/0043-1648(93)90374-U
6.
Zhang
,
K.
,
Yao
,
J.
, and
Jiang
,
T.
,
2014
, “
Degradation Assessment and Life Prediction of Electro-Hydraulic Servo Valve Under Erosion Wear
,”
Eng. Failure Anal.
,
36
, pp.
284
300
. 10.1016/j.engfailanal.2013.10.017
7.
Fitch
,
E. C.
, and
Hong
,
I. T.
,
2001
,
Hydraulic System Design for Service Assurance
,
BarDyne Incorporated
,
Stillwater, OK
.
8.
Jia
,
R.
,
1992
,
The Study of the Hydraulic Components Contaminant Wear Theory and Application
,
China University of Mining and Technology
,
Beijing
.
9.
Yunxia
,
C.
,
Wenjun
,
G.
, and
Rui
,
K.
,
2016
, “
Coupling Behavior Between Adhesive and Abrasive Wear Mechanism of Aero-Hydraulic Spool Valves
,”
Chin. J. Aeronaut.
,
29
(
4
), pp.
1119
1131
. 10.1016/j.cja.2016.01.001
10.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061301
. 10.1115/1.4005683
11.
Takaffoli
,
M.
, and
Papini
,
M.
,
2009
, “
Finite Element Analysis of Single Impacts of Angular Particles on Ductile Targets
,”
Wear
,
267
(
1–4
), pp.
144
151
. 10.1016/j.wear.2008.10.004
12.
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2009
, “
Improvements of Particle Near-Wall Velocity and Erosion Predictions Using a Commercial CFD Code
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031303
. 10.1115/1.3077139
13.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
. 10.1016/j.wear.2016.09.020
14.
Zhu
,
Y.
,
Zou
,
J.
,
Chen
,
X.
, and
Yang
,
H.
,
2016
, “
Tribology of Selective Laser Melting Processed Parts: Stainless Steel 316L Under Lubricated Conditions
,”
Wear
,
350–351
, pp.
46
55
. 10.1016/j.wear.2016.01.004
15.
Zhu
,
Y.
,
Lin
,
G.
,
Khonsari
,
M. M.
,
Zhang
,
J.
, and
Yang
,
H.
,
2018
, “
Material Characterization and Lubricating Behaviors of Porous Stainless Steel Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
262
, pp.
41
52
. 10.1016/j.jmatprotec.2018.06.027
16.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Experimental Investigation of Tribological Performance of Laser Textured Stainless Steel Rings
,”
Tribol. Int.
,
44
(
5
), pp.
635
644
. 10.1016/j.triboint.2011.01.003
17.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
,
2005
, “
The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes During Unidirectional Sliding Contact
,”
Tribol. Int.
,
38
(
3
), pp.
219
225
. 10.1016/j.triboint.2004.08.004
18.
Pettersson
,
U.
, and
Jacobson
,
S.
,
2003
, “
Influence of Surface Texture on Boundary Lubricated Sliding Contacts
,”
Tribol. Int.
,
36
(
11
), pp.
857
864
. 10.1016/S0301-679X(03)00104-X
19.
Sun
,
Y.
,
Moroz
,
A.
, and
Alrbaey
,
K.
,
2014
, “
Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel
,”
J. Mater. Eng. Perform.
,
23
(
2
), pp.
518
526
. 10.1007/s11665-013-0784-8
20.
Segura-Cardenas
,
E.
,
Ramirez-Cedillo
,
E.
,
Sandoval-Robles
,
J.
,
Ruiz-Huerta
,
L.
,
Caballero-Ruiz
,
A.
, and
Siller
,
H.
,
2017
, “
Permeability Study of Austenitic Stainless Steel Surfaces Produced by Selective Laser Melting
,”
Metals
,
7
(
12
), p.
521
. 10.3390/met7120521
21.
Motamen Salehi
,
F.
,
Morina
,
A.
, and
Neville
,
A.
,
2017
, “
The Effect of Soot and Diesel Contamination on Wear and Friction of Engine oil Pump
,”
Tribol. Int.
,
115
, pp.
285
296
. 10.1016/j.triboint.2017.05.041
22.
Tucho
,
W. M.
,
Lysne
,
V. H.
,
Austbø
,
H.
,
Sjolyst-Kverneland
,
A.
, and
Hansen
,
V.
,
2018
, “
Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L
,”
J. Alloys Compd.
,
740
, pp.
910
925
. 10.1016/j.jallcom.2018.01.098
23.
Salman
,
O. O.
,
Brenne
,
F.
,
Niendorf
,
T.
,
Eckert
,
J.
,
Prashanth
,
K. G.
,
He
,
T.
, and
Scudino
,
S.
,
2019
, “
Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting
,”
J. Manuf. Process.
,
45
, pp.
255
261
. 10.1016/j.jmapro.2019.07.010
24.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
,
2004
, “
The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime From Boundary to Hydrodynamic
,”
Tribol. Trans.
,
47
(
2
), pp.
299
307
. 10.1080/05698190490440902
25.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
(
1
), pp.
1
35
. 10.1023/A:1019186601445
26.
Wen
,
S.
, and
Huang
,
P.
,
2012
,
Principles of Tribology
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
135
142
.
27.
Mitrovic
,
S.
,
Adamovic
,
D.
,
Zivic
,
F.
,
Dzunic
,
D.
, and
Pantic
,
M.
,
2014
, “
Friction and Wear Behavior of Shot Peened Surfaces of 36CrNiMo4 and 36NiCrMo16 Alloyed Steels Under Dry and Lubricated Contact Conditions
,”
Appl. Surf. Sci.
,
290
, pp.
223
232
. 10.1016/j.apsusc.2013.11.050
28.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Kantzos
,
C.
,
Pauza
,
J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging
,”
Science
,
363
(
6429
), pp.
849
852
. 10.1126/science.aav4687
You do not currently have access to this content.