Al–Zn–Mg–Cu matrix composites reinforced with (0–20 wt %) Al2O3 particles have been manufactured by enhanced stir casting technique. Microstructural characterization of cast composites by optical, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDS) and X-ray diffraction (XRD) reveals homogeneous distribution of reinforcements in Al-alloy matrix with MgZn2 plus Al2CuMg intermetallics. With increasing particle content, hardness of composite rises considerably in spite of marginal rise in porosity. Tribological performance under two-body abrasion has been studied considering central composite design (CCD) apart from identification of mechanisms of wear via characterizations of abraded surfaces and debris. Composites exhibit significantly reduced wear rate and coefficient of friction (COF) irrespective of test conditions, since mechanisms of abrasion are observed to change from microplowing and microcutting in unreinforced alloy to mainly delamination with limited microplowing in composites. Effects of four independent factors (reinforcement content, load, abrasive grit size, and sliding distance) on wear behavior have been evaluated using response surface-based analysis of variance (ANOVA) technique. Dominant factors on both wear rate and COF are identified as reinforcement content followed by grit size and load. Combined optimization of wear rate and COF employing multiresponse optimization technique with desirability approach as well as regression models of individual responses have been developed, and their adequacies are validated by confirmatory tests. The developed mathematical models provide further insight on the complex interactions among wear performances of the selected materials and variables of abrasive system. The optimum amount of reinforcement is identified at around 15 wt % for achieving the lowest values of both wear rate and COF.

References

1.
Constantin
,
V.
,
Scheed
,
L.
, and
Masounave
,
J.
,
1999
, “
Sliding Wear of Aluminum-Silicon Carbide Metal Matrix Composites
,”
ASME J. Tribol.
,
121
(
4
), pp.
787
794
.
2.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
.
3.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2017
, “
Influence of Applied Load on Abrasive Wear Depth of Hybrid Gr/SiC/Al–Mg–Si Composites in a Two-Body Condition
,”
ASME J. Tribol.
,
139
(
6
), p.
061601
.
4.
Yılmaz
,
O.
, and
Buytoz
,
S.
,
2001
, “
Abrasive Wear of Al2O3-Reinforced Aluminium-Based MMCs
,”
Compos. Sci. Technol.
,
61
(
16
), pp.
2381
2392
.
5.
Wang
,
A. G.
, and
Hutchings
,
I. M.
,
1989
, “
Wear of Alumina Fibre–Aluminium Metal Matrix Composites by Two-Body Abrasion
,”
Mater. Sci. Technol.
,
5
(
1
), pp.
71
76
.
6.
Kumar
,
P. R. S.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Natarajan
,
S.
,
2010
, “
High Temperature Sliding Wear Behavior of Press-Extruded AA6061/Fly Ash Composite
,”
Mater. Sci. Eng.: A
,
527
(
6
), pp.
1501
1509
.
7.
Ahmed
,
A.
,
Neely
,
A. J.
,
Shankar
,
K.
,
Nolan
,
P.
,
Moricca
,
S.
, and
Eddowes
,
T.
,
2010
, “
Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1582
1591
.
8.
Roy
,
M.
,
Venkataraman
,
B.
,
Bhanuprasad
,
V. V.
,
Mahajan
,
Y. R.
, and
Sundararajan
,
G.
,
1992
, “
The Effect of Participate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites
,”
Metall. Trans. A
,
23
(
10
), pp.
2833
2847
.
9.
Chawla
,
N.
, and
Chawla
,
K. K.
,
2006
, “
Metal-Matrix Composites in Ground Transportation
,”
JOM J. Miner., Met. Mater. Soc.
,
58
(
11
), pp.
67
70
.
10.
Miracle
,
D. B.
,
2005
, “
Metal Matrix Composites–From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2526
2540
.
11.
Nili
,
B.
,
Subhash
,
G.
, and
Tulenko
,
J. S.
,
2018
, “
Coupled Electro-Thermo-Mechanical Simulation for Multiple Pellet Fabrication Using Spark Plasma Sintering
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051010
.
12.
Wang
,
J.
,
Yi
,
D.
,
Su
,
X.
,
Yin
,
F.
, and
Li
,
H.
,
2009
, “
Properties of Submicron AlN Particulate Reinforced Aluminum Matrix Composite
,”
Mater. Des.
,
30
(
1
), pp.
78
81
.
13.
Sajjadi
,
S. A.
,
Parizi
,
M. T.
,
Ezatpour
,
H. R.
, and
Sedghi
,
A.
,
2012
, “
Fabrication of A356 Composite Reinforced With Micro and Nano Al2O3 Particles by a Developed Compocasting Method and Study of Its Properties
,”
J. Alloys Compd.
,
511
(
1
), pp.
226
231
.
14.
Naher
,
S.
,
Brabazon
,
D.
, and
Looney
,
L.
,
2005
, “
Development and Assessment of a New Quick Quench Stir Caster Design for the Production of Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
166
(
3
), pp.
430
439
.
15.
Gupta
,
M.
,
Lai
,
M. O.
, and
Lim
,
C. Y. H.
,
2006
, “
Development of a Novel Hybrid Aluminum-Based Composite With Enhanced Properties
,”
J. Mater. Process. Technol.
,
176
(
1–3
), pp.
191
199
.
16.
Kok
,
M.
,
2005
, “
Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
381
387
.
17.
Xiu
,
Z.
,
Yang
,
W.
,
Chen
,
G.
,
Jiang
,
L.
,
Ma
,
K.
, and
Wu
,
G.
,
2012
, “
Microstructure and Tensile Properties of Si3N4p/2024Al Composite Fabricated by Pressure Infiltration Method
,”
Mater. Des.
,
33
, pp.
350
355
.
18.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
1999
, “
Metal Matrix Composites: Production by the Stir Casting Method
,”
J. Mater. Process. Technol.
,
92
, pp.
1
7
.
19.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
, 2014, “
Ultrasonic Cavitation Based Processing of Metal Matrix Nanocomposites: An Overview
,”
Adv. Mater. Res.
,
1042
, pp.
58
64
.
20.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
2002
, “
Particle Distribution in Cast Metal Matrix Composites—Part I
,”
J. Mater. Process. Technol.
,
123
(
2
), pp.
251
257
.
21.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
2002
, “
Particle Distribution in Cast Metal Matrix Composites—Part II
,”
J. Mater. Process. Technol.
,
123
(
2
), pp.
258
263
.
22.
Flemings
,
M. C.
,
1991
, “
Behavior of Metal Alloys in the Semisolid State
,”
Metall. Trans. A
,
22
(
5
), pp.
957
981
.
23.
Jokhio
,
M. H.
,
Panhwer
,
M. I.
, and
Unar
,
M. A.
,
2016
, “
Manufacturing of Aluminum Composite Material Using Stir Casting Process
,” Preprint
arXiv: 1604.01251
.https://arxiv.org/abs/1604.01251
24.
Naher
,
S.
,
Brabazon
,
D.
, and
Looney
,
L.
,
2003
, “
Simulation of the Stir Casting Process
,”
J. Mater. Process. Technol.
,
143
, pp.
567
571
.
25.
Su
,
H.
,
Gao
,
W.
,
Zhang
,
H.
,
Liu
,
H.
,
Lu
,
J.
, and
Lu
,
Z.
,
2010
, “
Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061007
.
26.
Prabu
,
S. B.
,
Karunamoorthy
,
L.
,
Kathiresan
,
S.
, and
Mohan
,
B.
,
2006
, “
Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
268
273
.
27.
Ezatpour
,
H. R.
,
Sajjadi
,
S. A.
,
Sabzevar
,
M. H.
, and
Huang
,
Y.
,
2014
, “
Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting
,”
Mater. Des.
,
55
, pp.
921
928
.
28.
Thomas
,
D. G.
,
1962
, “
Transport Characteristics of Suspensions—Part VI: Minimum Transport Velocity for Large Particle Size Suspensions in Round Horizontal Pipes
,”
AIChE J.
,
8
(
3
), pp.
373
378
.
29.
Umanath
,
K.
,
Palanikumar
,
K.
, and
Selvamani
,
S. T.
,
2013
, “
Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites
,”
Compos. Part B: Eng.
,
53
, pp.
159
168
.
30.
Pai
,
B. C.
,
Ramani
,
G.
,
Pillai
,
R. M.
, and
Satyanarayana
,
K. G.
,
1995
, “
Role of Magnesium in Cast Aluminium Alloy Matrix Composites
,”
J. Mater. Sci.
,
30
(
8
), pp.
1903
1911
.
31.
Sahin
,
Y.
, and
Özdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
.
32.
Hosking
,
F. M.
,
Portillo
,
F. F.
,
Wunderlin
,
R.
, and
Mehrabian
,
R.
,
1982
, “
Composites of Aluminium Alloys: Fabrication and Wear Behaviour
,”
J. Mater. Sci.
,
17
(
2
), pp.
477
498
.
33.
Huei-Long
,
L.
,
Wun-Hwa
,
L.
, and
Chan
,
S. L.-I.
,
1992
, “
Abrasive Wear of Powder Metallurgy Al Alloy 6061-SiC Particle Composites
,”
Wear
,
159
(
2
), pp.
223
231
.
34.
Kök
,
M.
, and
Özdin
,
K.
,
2007
, “
Wear Resistance of Aluminium Alloy and Its Composites Reinforced by Al2O3 Particles
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
301
309
.
35.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellup
,
J. M.
,
1996
, “
Abrasive Wear of Aluminium Composites—A Review
,”
Wear
,
201
(
1–2
), pp.
132
144
.
36.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al2O3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
37.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites—A Statistical Analysis
,”
Tribol. Int.
,
43
(
1–2
), pp.
414
422
.
38.
Şahin
,
Y.
,
2010
, “
Abrasive Wear Behaviour of SiC/2014 Aluminium Composite
,”
Tribol. Int.
,
43
(
5–6
), pp.
939
943
.
39.
Kumar
,
A.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al–4.5% Cu/TiC Composites
,”
Wear
,
306
(
1–2
), pp.
170
178
.
40.
Yigezu
,
B. S.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
On Modeling the Abrasive Wear Characteristics of In Situ Al–12% Si/TiC Composites
,”
Mater. Des.
,
50
, pp.
277
284
.
41.
Kumar
,
R.
, and
Dhiman
,
S.
,
2013
, “
A Study of Sliding Wear Behaviors of Al-7075 Alloy and Al-7075 Hybrid Composite by Response Surface Methodology Analysis
,”
Mater. Des.
,
50
, pp.
351
359
.
42.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
, Hoboken, NJ.
43.
Koksal
,
S.
,
Ficici
,
F.
,
Kayikci
,
R.
, and
Savas
,
O.
,
2012
, “
Experimental Optimization of Dry Sliding Wear Behavior of In Situ AlB2/Al Composite Based on Taguchi's Method
,”
Mater. Des.
,
42
, pp.
124
130
.
44.
Baskaran
,
S.
,
Anandakrishnan
,
V.
, and
Duraiselvam
,
M.
,
2014
, “
Investigations on Dry Sliding Wear Behavior of In Situ Casted AA7075–TiC Metal Matrix Composites by Using Taguchi Technique
,”
Mater. Des.
,
60
, pp.
184
192
.
45.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Abrasive Wear of Al Alloy–Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1–2
), pp.
131
138
.
46.
Das
,
S.
,
Mondal
,
D. P.
,
Sawla
,
S.
, and
Dixit
,
S.
,
2002
, “
High Stress Abrasive Wear Mechanism of LM13-SiC Composite Under Varying Experimental Conditions
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
3031
3044
.
47.
Das
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2007
, “
Abrasive Wear of Zircon Sand and Alumina Reinforced Al–4.5 wt% Cu Alloy Matrix Composites–A Comparative Study
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
746
751
.
48.
Yilmaz
,
S. O.
,
2007
, “
Comparison on Abrasive Wear of SiCrFe, CrFeC and Al2O3 Reinforced Al2024 MMCs
,”
Tribol. Int.
,
40
(
3
), pp.
441
452
.
49.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
.
50.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2008
, “
Effect of Submicron Size Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
J. Alloys Compd.
,
457
(
1–2
), pp.
244
250
.
51.
Rahimian
,
M.
,
Parvin
,
N.
, and
Ehsani
,
N.
,
2011
, “
The Effect of Production Parameters on Microstructure and Wear Resistance of Powder Metallurgy Al–Al2O3 Composite
,”
Mater. Des.
,
32
(
2
), pp.
1031
1038
.
52.
Diler
,
E. A.
, and
Ipek
,
R.
,
2013
, “
Main and Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on Wear Characteristics of Al–SiCp Composites Using Central Composite Design
,”
Compos. Part B: Eng.
,
50
, pp.
371
380
.
53.
Rokni
,
M. R.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H. R.
,
2012
, “
Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures
,”
Mater. Sci. Eng.: A
,
532
, pp.
593
600
.
54.
Karunanithi
,
R.
,
Bera
,
S.
, and
Ghosh
,
K. S.
,
2014
, “
Electrochemical Behaviour of TiO2 Reinforced Al 7075 Composite
,”
Mater. Sci. Eng.: B
,
190
, pp.
133
143
.
55.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technol.
,
10
(
6
), pp.
513
517
.
56.
Sheu
,
C.-Y.
, and
Lin
,
S.-J.
,
1996
, “
Particle Size Effects on the Abrasive Wear of 20 Vol% SiCp/7075Al Composites
,”
Scr. Mater.
,
35
(
11
), pp.
1271
1276
.
57.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Mondal
,
D. P.
,
Dasgupta
,
R.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Abrasive Wear Behaviour of Zinc-Aluminium Alloy-10% Al2O3 Composite Through Factorial Design of Experiment
,”
J. Mater. Sci.
,
36
(
7
), pp.
1601
1607
.
58.
Khuri
,
A. I.
, and
Mukhopadhyay
,
S.
,
2010
, “
Response Surface Methodology
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
2
), pp.
128
149
.
59.
Rao
,
C. R.
,
Rao
,
C. R.
,
Statistiker
,
M.
,
Rao
,
C. R.
, and
Rao
,
C. R.
,
1973
,
Linear Statistical Inference and Its Applications
,
Wiley
,
New York
.
60.
Kapsiz
,
M.
,
Durat
,
M.
, and
Ficici
,
F.
,
2011
, “
Friction and Wear Studies Between Cylinder Liner and Piston Ring Pair Using Taguchi Design Method
,”
Adv. Eng. Software
,
42
(
8
), pp.
595
603
.
61.
Sin
,
H.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1979
, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
,
55
(
1
), pp.
163
190
.
62.
Kato
,
K.
,
1992
, “
Micro-Mechanisms of Wear-Wear Modes
,”
Wear
,
153
(
1
), pp.
277
295
.
63.
Coulomb
,
C. A.
,
1785
,
Memoeires de Mathematiquie et de Physique de L'Academie Royale Des Sciences
.
64.
Derjaguin
,
B. V.
,
1934
, “
Molecular Theory of Friction and Sliding
,”
Zhurn. Phis. Khim
,
5
(9), pp.
1165
1172
(in Russian).
65.
Durban
,
D.
, 1999, “
Friction and Singularities in Steady Penetration
,”
IUTAM Symposium on Nonlinear Singularities in Deformation and Flow
, Springer, Dordrecht, The Netherlands, pp.
141
154
.
66.
Durban
,
D.
,
1979
, “
Axially Symmetric Radial Flow of Rigid/Linear-Hardening Materials
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
322
328
.
67.
Papanastasiou
,
P.
,
Durban
,
D.
, and
Lenoach
,
B.
,
2003
, “
Singular Plastic Fields in Wedge Indentation of Pressure Sensitive Solids
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2521
2534
.
68.
Bhushan
,
B.
,
2012
,
Tribology and Mechanics of Magnetic Storage Devices
,
Springer Science & Business Media
, New York.
69.
Ludema
,
K. C.
, and
Tabor
,
D.
,
1966
, “
The Friction and Visco-Elastic Properties of Polymeric Solids
,”
Wear
,
9
(
5
), pp.
329
348
.
70.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1986
,
The Friction and Lubrication of Solids (Retroactive Coverage)
,
Clarendon Press
,
Oxford, UK
.
71.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
, Oxford, UK.
72.
Rohatgi
,
P. K.
,
Guo
,
R. Q.
,
Huang
,
P.
, and
Ray
,
S.
,
1997
, “
Friction and Abrasion Resistance of Cast Aluminum Alloy-Fly Ash Composites
,”
Metall. Mater. Trans. A
,
28
(
1
), pp.
245
250
.
73.
Zum Gahr
,
K. H.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
74.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
High Stress Abrasive Wear Characteristics of Al 7075 Alloy and 7075/Al2O3 Composite
,”
Measurement
,
127
, pp.
42
62
.
75.
Clarke
,
J.
, and
Sarkar
,
A. D.
,
1981
, “
Topographical Features Observed in a Scanning Electron Microscopy Study of Aluminium Alloy Surfaces in Sliding Wear
,”
Wear
,
69
(
1
), pp.
1
23
.
76.
Al-Rubaie
,
K. S.
,
Yoshimura
,
H. N.
, and
de Mello
,
J. D. B.
,
1999
, “
Two-Body Abrasive Wear of Al–SiC Composites
,”
Wear
,
233
, pp.
444
454
.
You do not currently have access to this content.