Tribological properties, i.e., wear rate, coefficient of friction (COF), and roughness of worn surfaces of an Al-Mg-Zn-Cu alloy and its composite reinforced with 20 wt % Al2O3 particles developed by stir-casting method have been studied and compared under two-body abrasion considering four independent control factors, i.e., load, abrasive grit size, sliding distance, and velocity each at three different levels. Design of test conditions and analyses of output responses have been performed employing standard Taguchi L27 orthogonal array, signal-to-noise ratio, analysis of variance technique, and regression method. Irrespective of wear conditions, composite exhibits lower wear rate and reduced COF with reference to base alloy owing to the load bearing ability and better wear resistance capability of Al2O3 particles. Roughness of worn surfaces of composite is, however, found to be higher over base alloy due to nonuniform abrasion in case of composite that generates the protruded Al2O3 particles on contact surfaces as the surrounding soft matrix is easily removed. For all three tribo-responses of both materials, the most influential factor is identified as grit size followed by load and then, grit size-load interaction except for the roughness of worn surfaces where the influence of sliding distance is also considerable. Linear regression models with excellent predictability have been developed for all tribo-characteristics separately for base alloy and composite. The predominant mechanisms of abrasion are identified as plowing and microcutting for base alloy, but delamination for composite.

References

1.
Miracle
,
D. B.
,
2005
, “
Metal Matrix Composites–From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2526
2540
.
2.
Borgonovo, C., and Apelian, D., 2011, “Manufacture of Aluminum Nanocomposites: A Critical Review,”
Mater. Sci. Forum,
678, pp. 1–22.
3.
Abarghouie
,
S. M. R. M.
, and
Reihani
,
S. M. S.
,
2010
, “
Investigation of Friction and Wear Behaviors of 2024 Al and 2024 Al/SiCp Composite at Elevated Temperatures
,”
J. Alloys Compd.
,
501
(
2
), pp.
326
332
.
4.
Kumar
,
P. R. S.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Natarajan
,
S.
,
2010
, “
High Temperature Sliding Wear Behavior of Press-Extruded AA6061/Fly Ash Composite
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1501
1509
.
5.
Chawla
,
N. C. K. K.
, and
Chawla
,
K. K.
,
2006
, “
Metal-Matrix Composites in Ground Transportation
,”
J. Miner. Met. Mater. Soc.
,
58
(
11
), pp.
67
70
.
6.
Sahin
,
Y.
, and
Özdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
.
7.
Suresha, B., Siddaramaiah, Kishore, Seetharamu, S., and Kumaran, P. S.,
2009
, “
Investigations on the Influence of Graphite Filler on Dry Sliding Wear and Abrasive Wear Behaviour of Carbon Fabric Reinforced Epoxy Composites
,”
Wear
,
267
(
9
), pp.
1405
1414
.
8.
Kumar
,
A.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al–4.5% Cu/TiC Composites
,”
Wear
,
306
(
1–2
), pp.
170
178
.
9.
Misra
,
A.
, and
Finnie
,
I.
,
1980
, “
A Classification of Three-Body Abrasive Wear and Design of a New Tester
,”
Wear
,
60
(
1
), pp.
111
121
.
10.
Kök
,
M.
, and
Özdin
,
K.
,
2007
, “
Wear Resistance of Aluminium Alloy and Its Composites Reinforced by Al2O3 Particles
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
301
309
.
11.
Das
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2007
, “
Abrasive Wear of Zircon Sand and Alumina Reinforced Al–4.5 Wt% Cu Alloy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
746
751
.
12.
Das
,
S.
,
Mondal
,
D. P.
,
Sawla
,
S.
, and
Dixit
,
S.
,
2002
, “
High Stress Abrasive Wear Mechanism of LM13-SiC Composite Under Varying Experimental Conditions
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
3031
3044
.
13.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Abrasive Wear of Al Alloy–Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1–2
), pp.
131
138
.
14.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites—A Statistical Analysis
,”
Tribol. Int.
,
43
(
1–2
), pp.
414
422
.
15.
Huei-Long
,
L.
,
Wun-Hwa
,
L.
, and
Chan
,
S. L.-I.
,
1992
, “
Abrasive Wear of Powder Metallurgy Al Alloy 6061-SiC Particle Composites
,”
Wear
,
159
(
2
), pp.
223
231
.
16.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellup
,
J. M.
,
1996
, “
Abrasive Wear of Aluminium Composites–A Review
,”
Wear
,
201
(
1–2
), pp.
132
144
.
17.
Al-Rubaie
,
K. S.
,
Yoshimura
,
H. N.
, and
de Mello
,
J. D. B.
,
1999
, “
Two-Body Abrasive Wear of Al–SiC Composites
,”
Wear
, 233–235, pp.
444
454
.
18.
Rao
,
R. N.
,
Das
,
S.
,
Mondal
,
D. P.
, and
Dixit
,
G.
,
2009
, “
Dry Sliding Wear Behaviour of Cast High Strength Aluminium Alloy (Al–Zn–Mg) and Hard Particle Composites
,”
Wear
,
267
(
9–10
), pp.
1688
1695
.
19.
Rao
,
R. N.
,
Das
,
S.
,
Mondal
,
D. P.
,
Dixit
,
G.
, and
Devi
,
S. L. T.
,
2013
, “
Dry Sliding Wear Maps for AA7010 (Al–Zn–Mg–Cu) Aluminium Matrix Composite
,”
Tribol. Int.
,
60
, pp.
77
82
.
20.
Taguchi
,
G.
,
Chowdhury
,
S.
, and
Wu
,
Y.
,
2005
,
Taguchiś Quality Engineering Handbook
,
Wiley
, New York.
21.
León
,
R. V.
,
Shoemaker
,
A. C.
, and
Kacker
,
R. N.
,
1987
, “
Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchiś Signal-to-Noise Ratios
,”
Technometrics
,
29
(
3
), pp.
253
265
.
22.
Şahin
,
Y.
,
2010
, “
Abrasive Wear Behaviour of SiC/2014 Aluminium Composite
,”
Tribol. Int.
,
43
(
5
), pp.
939
943
.
23.
Yigezu
,
B. S.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
On Modeling the Abrasive Wear Characteristics of In Situ Al–12% Si/TiC Composites
,”
Mater. Des.
,
50
, pp.
277
284
.
24.
Kumar
,
R.
, and
Dhiman
,
S.
,
2013
, “
A Study of Sliding Wear Behaviors of Al-7075 Alloy and Al-7075 Hybrid Composite by Response Surface Methodology Analysis
,”
Mater. Des.
,
50
, pp.
351
359
.
25.
Rahimian
,
M.
,
Parvin
,
N.
, and
Ehsani
,
N.
,
2011
, “
The Effect of Production Parameters on Microstructure and Wear Resistance of Powder Metallurgy Al–Al2O3 Composite
,”
Mater. Des.
,
32
(
2
), pp.
1031
1038
.
26.
Koksal
,
S.
,
Ficici
,
F.
,
Kayikci
,
R.
, and
Savas
,
O.
,
2012
, “
Experimental Optimization of Dry Sliding Wear Behavior of In Situ AlB2/Al Composite Based on Taguchi's Method
,”
Mater. Des.
,
42
, pp.
124
130
.
27.
Baskaran
,
S.
,
Anandakrishnan
,
V.
, and
Duraiselvam
,
M.
,
2014
, “
Investigations on Dry Sliding Wear Behavior of In Situ Casted AA7075–TiC Metal Matrix Composites by Using Taguchi Technique
,”
Mater. Des.
,
60
, pp.
184
192
.
28.
Al-Rubaie
,
K. S.
,
Goldenstein
,
H.
, and
de Mello
,
J. D. B.
,
1999
, “
Three-Body Abrasion of Al–SiC Composites
,”
Wear
, 225–229, pp.
163
173
.
29.
Yilmaz
,
S. O.
,
2007
, “
Comparison on Abrasive Wear of SiCrFe, CrFeC and Al2O3 Reinforced Al2024 MMCs
,”
Tribol. Int.
,
40
(
3
), pp.
441
452
.
30.
Ahmed
,
A.
,
Neely
,
A. J.
,
Shankar
,
K.
,
Nolan
,
P.
,
Moricca
,
S.
, and
Eddowes
,
T.
,
2010
, “
Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1582
1591
.
31.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2008
, “
Effect of Submicron Size Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
J. Alloys Compd.
,
457
(
1–2
), pp.
244
250
.
32.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
.
33.
Wang
,
A. G.
, and
Hutchings
,
I. M.
,
1989
, “
Wear of Alumina Fibre–Aluminium Metal Matrix Composites by Two-Body Abrasion
,”
Mater. Sci. Technol.
,
5
(
1
), pp.
71
76
.
34.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Mondal
,
D. P.
,
Dasgupta
,
R.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Abrasive Wear Behaviour of Zinc-Aluminium Alloy-10% Al2O3 Composite Through Factorial Design of Experiment
,”
J. Mater. Sci.
,
36
(
7
), pp.
1601
1607
.
35.
Sheu
,
C.-Y.
, and
Lin
,
S.-J.
,
1996
, “
Particle Size Effects on the Abrasive Wear of 20 Vol% SiCp/7075Al Composites
,”
Scr. Mater.
,
35
(
11
), pp.
1271
1276
.
36.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
1999
, “
Metal Matrix Composites: Production by the Stir Casting Method
,”
J. Mater. Process. Technol.
, 92–93, pp.
1
7
.
37.
Kok
,
M.
,
2005
, “
Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
381
387
.
38.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
, 2014, “
Ultrasonic Cavitation Based Processing of Metal Matrix Nanocomposites: An Overview
,”
Adv. Mater. Res.
, 1042, pp.
58
64
.
39.
Umanath
,
K.
,
Palanikumar
,
K.
, and
Selvamani
,
S. T.
,
2013
, “
Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites
,”
Composites, Part B
,
53
, pp.
159
168
.
40.
Akbari
,
M. K.
,
Mirzaee
,
O.
, and
Baharvandi
,
H. R.
,
2013
, “
Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method
,”
Mater. Des.
,
46
, pp.
199
205
.
41.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technol.
,
10
(
6
), pp.
513
517
.
42.
Moore
,
M. A.
,
1974
, “
A Review of Two-Body Abrasive Wear
,”
Wear
,
27
(
1
), pp.
1
17
.
43.
Siddhartha, Patnaik, A., and Bhatt, A. D.,
2011
, “
Mechanical and Dry Sliding Wear Characterization of Epoxy–TiO2 Particulate Filled Functionally Graded Composites Materials Using Taguchi Design of Experiment
,”
Mater. Des.
,
32
(
2
), pp.
615
627
.
44.
Ross
,
P. J. P. J.
,
1996
,
Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design
, McGraw Hill Professional, New York.
45.
Kapsiz
,
M.
,
Durat
,
M.
, and
Ficici
,
F.
,
2011
, “
Friction and Wear Studies Between Cylinder Liner and Piston Ring Pair Using Taguchi Design Method
,”
Adv. Eng. Software
,
42
(
8
), pp.
595
603
.
46.
Yu
,
S. Y.
,
Ishii
,
H.
,
Tohgo
,
K.
,
Cho
,
Y. T.
, and
Diao
,
D.
,
1997
, “
Temperature Dependence of Sliding Wear Behavior in SiC Whisker or SiC Particulate Reinforced 6061 Aluminum Alloy Composite
,”
Wear
,
213
(
1–2
), pp.
21
28
.
47.
Rokni
,
M. R.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H. R.
,
2012
, “
Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures
,”
Mater. Sci. Eng.: A
,
532
, pp.
593
600
.
48.
Karunanithi
,
R.
,
Bera
,
S.
, and
Ghosh
,
K. S.
,
2014
, “
Electrochemical Behaviour of TiO2 Reinforced Al 7075 Composite
,”
Mater. Sci. Eng. B
,
190
, pp.
133
143
.
49.
Sajjadi
,
S. A.
,
Parizi
,
M. T.
,
Ezatpour
,
H. R.
, and
Sedghi
,
A.
,
2012
, “
Fabrication of A356 Composite Reinforced With Micro and Nano Al2O3 Particles by a Developed Compocasting Method and Study of Its Properties
,”
J. Alloys Compd.
,
511
(
1
), pp.
226
231
.
50.
Reveron
,
H.
,
Zaafrani
,
O.
, and
Fantozzi
,
G.
,
2010
, “
Microstructure Development, Hardness, Toughness and Creep Behaviour of Pressureless Sintered Alumina/SiC Micro–Nanocomposites Obtained by Slip-Casting
,”
J. Eur. Ceram. Soc.
,
30
(
6
), pp.
1351
1357
.
51.
Goddard
,
J.
, and
Wilman
,
H.
,
1962
, “
A Theory of Friction and Wear During the Abrasion of Metals
,”
Wear
,
5
(
2
), pp.
114
135
.
52.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1986
,
The Friction and Lubrication of Solids
,
Clarendon Press
,
Oxford, UK
.
53.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
, Oxford, UK.
54.
Veeravalli
,
R. R.
,
Nallu
,
R.
, and
Mohiuddin
,
S. M. M.
,
2016
, “
Mechanical and Tribological Properties of AA7075–TiC Metal Matrix Composites Under Heat Treated (T6) and Cast Conditions
,”
J. Mater. Res. Technol.
,
5
(
4
), pp.
377
383
.
55.
Ernest
,
R.
,
1995
,
Friction and Wear of Materials
,
Wiley
,
New York
, pp.
44
238
.
56.
Rohatgi
,
P. K.
,
Guo
,
R. Q.
,
Huang
,
P.
, and
Ray
,
S.
,
1997
, “
Friction and Abrasion Resistance of Cast Aluminum Alloy-Fly Ash Composites
,”
Metall. Mater. Trans. A
,
28
(
1
), pp.
245
250
.
57.
Rao
,
C. R.
,
Rao
,
C. R.
,
Statistiker
,
M.
,
Rao
,
C. R.
, and
Rao
,
C. R.
,
1973
,
Linear Statistical Inference and Its Applications
,
Wiley
,
New York
.
58.
Kato
,
K.
,
1992
, “
Micro-Mechanisms of Wear–Wear Modes
,”
Wear
,
153
(
1
), pp.
277
295
.
59.
Zum Gahr
,
K. H.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
60.
Clarke
,
J.
, and
Sarkar
,
A. D.
,
1981
, “
Topographical Features Observed in a Scanning Electron Microscopy Study of Aluminium Alloy Surfaces in Sliding Wear
,”
Wear
,
69
(
1
), pp.
1
23
.
61.
Friedrich, K., and Pipes, R. B., eds., 1993, Advances in Composite Tribology (Composite Materials Series, Vol. 8), Elsevier, Amsterdam, The Netherlands.
You do not currently have access to this content.