Although extensive improvement has been done on brake pad for vehicles, most recent materials used still encounter wear rate, friction, stopping distance, and time deficiencies. In this regards, this study developed a polymer-based nanocomposite brake pad. Here, a combination of carbon-based materials, including those at a nanoscale, was used to produce the brake pad. Tribological performance, such as friction coefficient, wear rate, and stopping distances of developed brake pad were investigated using an inertial dynamometer. The results revealed that the stopping distances, the coefficient of friction (CoF), and wear rate vary with the brake pad formation and velocity. The micrographs show changes in the structural formation after the incorporation of carbon-based fillers. It also shows smooth surface structure and uniform dispersion of the carbon fiber. The smooth surface of the worn brake pad is an indicative of a tougher structure. Hence, it was deduced that the fabricated polymer-based hybrid composite had good tribological property. This improved property is suggestive of materials that may be successfully used for brake pad application.

References

1.
Su
,
F.-h.
,
Zhang
,
Z.-Z.
, and
Liu
,
W.-M.
,
2006
, “
Mechanical and Tribological Properties of Carbon Fabric Composites Filled With Several Nano-Particulates
,”
Wear
,
260
(
7–8
), pp.
861
868
.
2.
Pesetskii
,
S. S.
,
Bogdanovich
,
S. P.
, and
Myshkin
,
N. K.
,
2007
, “
Tribological Behavior of Nanocomposites Produced by the Dispersion of Nanofillers in Polymer Melts
,”
J. Friction Wear
,
28
(
5
), pp.
457
475
.
3.
Zhao
,
G.
,
Hussainova
,
I.
,
Antonov
,
M.
,
Wang
,
Q.
, and
Wang
,
T.
,
2013
, “
Friction and Wear of Fiber Reinforced Polyimide Composites
,”
Wear
,
301
(1–2), pp.
122
129
.
4.
Ibhadode
,
A.
, and
Dagwa
,
I.
,
2008
, “
Development of Asbestos-Free Friction Lining Material From Palm Kernel Shell
,”
J. Braz. Soc. Mech. Sci. Eng.
,
30
(2), pp.
166
173
.
5.
Kim
,
S. J.
, and
Jang
,
H.
,
2000
, “
Friction and Wear of Friction Materials Containing Two Different Phenolic Resins Reinforced With Aramid Pulp
,”
Tribol. Int.
,
33
(
7
), pp.
477
484
.
6.
Bijwe
,
J.
,
Majumdar
,
N.
, and
Satapathy
,
B. K.
,
2005
, “
Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials
,”
Wear
,
259
(
7–12
), pp.
1068
1078
.
7.
Hwang
,
H. J.
,
Jung
,
S. L.
,
Cho
,
K. H.
,
Kim
,
Y. J.
, and
Jang
,
H.
,
2010
, “
Tribological Performance of Brake Friction Materials Containing Carbon Nanotubes
,”
Wear
,
268
(
3–4
), pp.
519
525
.
8.
Jang
,
H.
,
Ko
,
K.
,
Kim
,
S. J.
,
Basch
,
R. H.
, and
Fash
,
J. W.
,
2004
, “
The Effect of Metal Fibers on the Friction Performance of Automotive Brake Friction Materials
,”
Wear
,
256
(
3–4
), pp.
406
414
.
9.
Lee
,
K.-J.
,
Hsu
,
M.-H.
,
Cheng
,
H.-Z.
,
Jang
,
J. S.-C.
,
Lin
,
S.-W.
,
Lee
,
C.-C.
, and Lin, S.-C.,
2009
, “
Tribological and Mechanical Behavior of Carbon Nanotube Containing Brake Lining Materials Prepared Through Sol–Gel Catalyst Dispersion and CVD Process
,”
J. Alloys Compd.
,
483
(
1–2
), pp.
389
393
.
10.
Cho
,
M. H.
,
Kim
,
S. J.
,
Kim
,
D.
, and
Jang
,
H.
,
2005
, “
Effects of Ingredients on Tribological Characteristics of a Brake Lining: An Experimental Case Study
,”
Wear
,
258
, pp.
1682
1687
.
11.
Yi
,
G.
, and
Yan
,
F.
,
2007
, “
Mechanical and Tribological Properties of Phenolic Resin-Based Friction Composites Filled With Several Inorganic Fillers
,”
Wear
,
262
(
1–2
), pp.
121
129
.
12.
Nagesh
,
S.
,
Siddaraju
,
C.
,
Prakash
,
S.
, and
Ramesh
,
M.
,
2014
, “
Characterization of Brake Pads by Variation in Composition of Friction Materials
,”
Procedia Mater. Sci.
,
5
, pp.
295
302
.
13.
Buckley
,
J. D.
, and
Edie
,
D. D.
,
1993
,
Carbon-Carbon Materials and Composites
, Vol.
1254
,
William Andrew
,
Norwich, NY
.
14.
Peebles
,
L.
, Jr.
,
1995
,
Carbon Fibers, Formation, Structure and Properties
,
CRC Press
,
Boca Raton, FL
.
15.
Kim
,
J. W.
,
Jang
,
H.
, and
Woo Kim
,
J.
,
2014
, “
Friction and Wear of Monolithic and Glass-Fiber Reinforced PA66 in Humid Conditions
,”
Wear
,
309
(
1–2
), pp.
82
88
.
16.
Friedrich
,
K.
,
Zhang
,
Z.
, and
Schlarb
,
A. K.
,
2005
, “
Effects of Various Fillers on the Sliding Wear of Polymer Composites
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2329
2343
.
17.
Khun
,
N. W.
,
Zhang
,
H.
,
Lim
,
L. H.
,
Yue
,
C. Y.
,
Hu
,
X.
, and
Yang
,
J.
,
2014
, “
Tribological Properties of Short Carbon Fibers Reinforced Epoxy Composites
,”
Friction
,
2
(
3
), pp.
226
239
.
18.
Chan
,
D.
, and
Stachowiak
,
G.
,
2004
, “
Review of Automotive Brake Friction Materials
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
218
(
9
), pp.
953
966
.
19.
Liew
,
K. W.
, and
Nirmal
,
U.
,
2013
, “
Frictional Performance Evaluation of Newly Designed Brake Pad Materials
,”
Mater. Des.
,
48
, pp.
25
33
.
20.
Jang
,
H.
,
Lee
,
J. S.
, and
Fash
,
J. W.
,
2001
, “
Compositional Effects of the Brake Friction Material on Creep Groan Phenomena
,”
Wear
,
251
(
1–2
), pp.
1477
1483
.
21.
Blau
,
P. J.
,
2001
, “
Compositions, Functions, and Testing of Friction Brake Materials and Their Additives
,” Oak Ridge National Lab, Oak Ridge, TN, Report No.
ORNL/TM-2001/64
.https://info.ornl.gov/sites/publications/Files/Pub57043.pdf
22.
Cho
,
M. H.
,
Ju
,
J.
,
Kim
,
S. J.
, and
Jang
,
H.
,
2006
, “
Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials
,”
Wear
,
260
(
7–8
), pp.
855
860
.
23.
Jang
,
H.
, and
Kim
,
S. J.
,
2000
, “
The Effects of Antimony Trisulfide (Sb2S3) and Zirconium Silicate (ZrSiO4) in the Automotive Brake Friction Material on Friction Characteristics
,”
Wear
,
239
(
2
), pp.
229
236
.
24.
Kim
,
S. J.
,
Hyung Cho
,
M.
,
Hyung Cho
,
K.
, and
Jang
,
H.
,
2007
, “
Complementary Effects of Solid Lubricants in the Automotive Brake Lining
,”
Tribol. Int.
,
40
(
1
), pp.
15
20
.
25.
Deshmukh
,
P.
,
Lovell
,
M.
,
Sawyer
,
W. G.
, and
Mobley
,
A.
,
2006
, “
On the Friction and Wear Performance of Boric Acid Lubricant Combinations in Extended Duration Operations
,”
Wear
,
260
(
11–12
), pp.
1295
1304
.
26.
Han
,
L.
,
Huang
,
L.
,
Zhang
,
J.
, and
Lu
,
Y.
,
2006
, “
Optimization of Ceramic Friction Materials
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
2895
2906
.
27.
Gojny
,
F.
,
Wichmann
,
M.
,
Köpke
,
U.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2004
, “
Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2363
2371
.
28.
Gbadeyan
,
O. J.
,
Kanny
,
K.
, and
Mohan
,
T. P.
,
2017
, “
Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites
,”
ASME J. Tribol.
,
140
(
2
), p.
022002
.
29.
Gbadeyan
,
O. J.
,
Kanny
,
K.
, and
Mohan
,
T. P.
,
2017
, “
Influence of the Multi-Walled Carbon Nanotube and Short Carbon Fibre Composition on Tribological Properties of` Epoxy Composites
,”
Tribol. Mater., Surf. Interfaces
,
11
(
2
), pp.
59
65
.
30.
Yang
,
K.
,
Gu
,
M.
,
Guo
,
Y.
,
Pan
,
X.
, and
Mu
,
G.
,
2009
, “
Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites
,”
Carbon
,
47
(
7
), pp.
1723
1737
.
31.
Yang
,
S.-Y.
,
Lin
,
W.-N.
,
Huang
,
Y.-L.
,
Tien
,
H.-W.
,
Wang
,
J.-Y.
,
Ma
,
C.-C. M.
, Li, S.-M., and Wang, Y.-S.,
2011
, “
Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites
,”
Carbon
,
49
(
3
), pp.
793
803
.
32.
Gojny
,
F. H.
, and
Schulte
,
K.
,
2004
, “
Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-Wall Carbon Nanotube/Epoxy-Composites
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2303
2308
.
33.
Yasmin
,
A.
,
Luo
,
J.-J.
, and
Daniel
,
I. M.
,
2006
, “
Processing of Expanded Graphite Reinforced Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
66
(
9
), pp.
1182
1189
.
34.
Sengupta
,
R.
,
Bhattacharya
,
M.
,
Bandyopadhyay
,
S.
, and
Bhowmick
,
A. K.
,
2011
, “
A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites
,”
Prog. Polym. Sci.
,
36
(
5
), pp.
638
670
.
35.
Li
,
J.
, and
Xia
,
Y.
,
2009
, “
The Reinforcement Effect of Carbon Fiber on the Friction and Wear Properties of Carbon Fiber Reinforced PA6 Composites
,”
Fibers Polym.
,
10
(
4
), pp.
519
525
.
36.
Zhang
,
Z.
,
Bredit
,
C.
,
Haupert
,
F.
, and
Friedric
,
K.
,
2004
, “
Enhancement of the Wear Resistance of Epoxy: Short Fibre, Graphite, PTFE and Nano-TiO2
,”
Comp. Part A: Appl. Sci. Manuf.
,
35
(
12
), pp.
1385
1392
.
37.
Li
,
D.-X.
,
You
,
Y.-L.
,
Deng
,
X.
,
Li
,
W.-J.
, and
Xie
,
Y.
,
2013
, “
Tribological Properties of Solid Lubricants Filled Glass Fiber Reinforced Polyamide 6 Composites
,”
Mater. Des.
,
46
, pp.
809
815
.
38.
Wang
,
J.
,
Gu
,
M.
,
Songhao
,
B.
, and
Ge
,
S.
,
2003
, “
Investigation of the Influence of MoS2 Filler on the Tribological Properties of Carbon Fiber Reinforced Nylon 1010 Composites
,”
Wear
,
255
(
1–6
), pp.
774
779
.
39.
Lim
,
D.-S.
,
An
,
J.-W.
, and
Lee
,
H. J.
,
2002
, “
Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites
,”
Wear
,
252
(
5–6
), pp.
512
517
.
40.
El-Tayeb
,
N. S. M.
, and
Liew
,
K. W.
,
2009
, “
On the Dry and Wet Sliding Performance of Potentially New Frictional Brake Pad Materials for Automotive Industry
,”
Wear
,
266
(
1–2
), pp.
275
287
.
You do not currently have access to this content.